Nav: Home

Towards increasingly personalized fracture risk assessment

October 16, 2016

In people over 50 years of age, fractures are so common that for example one in three women will suffer a wrist, ankle or hip fracture during their life. Low-energy fractures caused by bone weakening are one manifestation of osteoporosis. These fractures are painful and considerably weaken the patient's quality of life and, in the worst case scenario, can even lead to death.

The current method for assessing the fracture risk is dual energy x-ray absorptiometry, which measures bone mineral density. However, reduced bone mineral density accounts for less than a third of all low-energy fractures, meaning that in a group of people with a similar reduction in bone mineral density, some suffer fractures and others don't. Moreover, these kinds of fracture risk assessments are generally performed only in specialist health care, which is expensive and requires that the patient has a referral to a specialist.

Speed of sound is the "hole" story

Osteoporosis-induced thinning of the cortical bone layer can be detected in long bones, such as the shin bone, with the help of a pulse-echo ultrasound method, which is optimal for screening large populations. Cortical bone thickness measurements typically do not take site-specific speed of sound, which is dependent on cortical bone porosity, into consideration. However, there is variation in the micro-structure, mechanical properties and density of cortical bones between individuals, and this variation may affect speed of sound. In order for the method to be increasingly relevant in osteoporosis management, including treatment monitoring, the accuracy of bone thickness measurements could be improved by taking into consideration the effect of porosity variation on speed of sound.

In his PhD thesis completed at the University of Eastern Finland, Chibuzor Eneh, MSc, successfully analysed cortical bone porosity from pulse-echo ultrasound backscatter using a multivariate method. Cortical bone porosity was then used to estimate subject-specific and site-specific speed of sound, allowing for an increasingly accurate estimate of cortical bone thickness. In addition to increasing the accuracy of thickness measurements, the method also provides information on cortical bone porosity, which is important because increased porosity is an early indication of cortical bone thinning.

The ultrasound method developed in the PhD dissertation constitutes a step in the direction of an increasingly personalised and earlier assessment of fracture risk, which could be easily and cost-efficiently applied in osteoporosis diagnostics and follow-up in basic health care.

The findings were originally published in the Journal of the Acoustical Society of America and Medical Physics.
The doctoral dissertation, entitled Pulse-Echo Ultrasound Assessment of Cortical Bone Thickness and Porosity, is available for download at:

For further information, please contact: Early Stage Researcher Chibuzor Eneh, tel. +358 50 573 4274,

University of Eastern Finland

Related Osteoporosis Articles:

Mind the (osteoporosis treatment) gap!
A new review, referencing key clinical studies, guidelines and audits, outlines the main global challenges (and their solutions) facing healthcare professionals and policymakers responsible for providing care to populations in relation to bone health and fracture prevention.
Outwitting the 'silent thief' of osteoporosis
In a world first, new Australian research has revealed that genetic profiling can help predict whether an individual will break a bone through osteoporosis.
Osteoporosis: Antibody crystallized
Inhibiting a protein called Sclerostin could probably help treating the bone-loss disease osteoporosis.
JBMR perspective: A crisis in the treatment of osteoporosis
The remarkable progress made over the past 30 years to reduce fractures and dramatically improve the quality of life for millions of osteoporosis patients is rapidly being reversed, say two bone health experts in a Journal of Bone and Mineral Research article published online today.
The developmental origins of osteoporosis
Osteoporosis may have its origins in early life, but the consequences are not apparent until late adult life.
Task force provides guidance on use of osteoporosis drugs
A new report by a task force of the American Society for Bone and Mineral Research provides guidance on the use of bisphosphonates, which are the most commonly used medications for osteoporosis.
Whole genome-sequencing uncovers new genetic cause for osteoporosis
Using one of the world's most extensive genetics data sets, an international research team led by Dr.
Men far less likely to prevent, screen for osteoporosis
While the consequences of osteoporosis are worse in men than women -- including death -- older males are far less likely to take preventive measures against the potentially devastating bone-thinning disease or accept recommendations for screening, according to startling new research by North Shore-LIJ Health System geriatricians.
'Aquatic osteoporosis' jellifying lakes
North American lakes are suffering from declining calcium levels, says new research from Queen's University.
Osteoporosis, not just a woman's disease
While osteoporosis prevention and treatment efforts have historically been focused on post-menopausal women, a new study from Beth Israel Deaconess Medical Center suggests that critical opportunities are being lost by not focusing more attention on bone loss and fracture risk in older men.

Related Osteoporosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...