Nav: Home

Towards increasingly personalized fracture risk assessment

October 16, 2016

In people over 50 years of age, fractures are so common that for example one in three women will suffer a wrist, ankle or hip fracture during their life. Low-energy fractures caused by bone weakening are one manifestation of osteoporosis. These fractures are painful and considerably weaken the patient's quality of life and, in the worst case scenario, can even lead to death.

The current method for assessing the fracture risk is dual energy x-ray absorptiometry, which measures bone mineral density. However, reduced bone mineral density accounts for less than a third of all low-energy fractures, meaning that in a group of people with a similar reduction in bone mineral density, some suffer fractures and others don't. Moreover, these kinds of fracture risk assessments are generally performed only in specialist health care, which is expensive and requires that the patient has a referral to a specialist.

Speed of sound is the "hole" story

Osteoporosis-induced thinning of the cortical bone layer can be detected in long bones, such as the shin bone, with the help of a pulse-echo ultrasound method, which is optimal for screening large populations. Cortical bone thickness measurements typically do not take site-specific speed of sound, which is dependent on cortical bone porosity, into consideration. However, there is variation in the micro-structure, mechanical properties and density of cortical bones between individuals, and this variation may affect speed of sound. In order for the method to be increasingly relevant in osteoporosis management, including treatment monitoring, the accuracy of bone thickness measurements could be improved by taking into consideration the effect of porosity variation on speed of sound.

In his PhD thesis completed at the University of Eastern Finland, Chibuzor Eneh, MSc, successfully analysed cortical bone porosity from pulse-echo ultrasound backscatter using a multivariate method. Cortical bone porosity was then used to estimate subject-specific and site-specific speed of sound, allowing for an increasingly accurate estimate of cortical bone thickness. In addition to increasing the accuracy of thickness measurements, the method also provides information on cortical bone porosity, which is important because increased porosity is an early indication of cortical bone thinning.

The ultrasound method developed in the PhD dissertation constitutes a step in the direction of an increasingly personalised and earlier assessment of fracture risk, which could be easily and cost-efficiently applied in osteoporosis diagnostics and follow-up in basic health care.

The findings were originally published in the Journal of the Acoustical Society of America and Medical Physics.
-end-
The doctoral dissertation, entitled Pulse-Echo Ultrasound Assessment of Cortical Bone Thickness and Porosity, is available for download at: http://epublications.uef.fi/pub/urn_isbn_978-952-61-2225-0/urn_isbn_978-952-61-2225-0.pdf

For further information, please contact: Early Stage Researcher Chibuzor Eneh, tel. +358 50 573 4274, chibuzor.eneh@uef.fi

University of Eastern Finland

Related Osteoporosis Articles:

New pharmaceutical target reverses osteoporosis in mice
Biomedical engineers at Duke University have discovered that an adenosine receptor called A2B can be pharmaceutically activated to reverse bone degradation caused by osteoporosis in mouse models of the disease.
A link between mitochondrial damage and osteoporosis
In healthy people, a tightly controlled process balances out the activity of osteoblasts, which build bone, and osteoclasts, which break it down.
Many stroke patients not screened for osteoporosis, despite known risks
Many stroke survivors have an increased risk of osteoporosis, falls or breaks when compared to healthy people.
Many postmenopausal women do not receive treatment for osteoporosis
The benefits of treating osteoporosis in postmenopausal women outweigh the perceived risks, according to a Clinical Practice Guideline issued today by the Endocrine Society.
A new 'atlas' of genetic influences on osteoporosis
A ground-breaking new study led by researchers from the Lady Davis Institute (LDI) at the Jewish General Hospital (JGH) has succeeded in compiling an atlas of genetic factors associated with estimated bone mineral density (BMD), one of the most clinically relevant factors in diagnosing osteoporosis.
More Osteoporosis News and Osteoporosis Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...