Nav: Home

New UTSA study describes how dopamine tells you it isn't worth the wait

October 16, 2017

How do we know if it was worth the wait in line to get a meal at the new restaurant in town? To do this our brain must be able to signal how good the meal tastes and associate this feeling with the restaurant. This is done by a small group of cells deep in the brain that release the chemical dopamine. The amount of dopamine released by these cells can influence our decisions by telling us how good a reward will be in the future. For example, more dopamine is released to the smell of a cake baking relative to the smell of leftovers. But does waiting change how dopamine is released?

A new study in Cell Reports by Matthew Wanat, assistant professor of biology at The University of Texas at San Antonio (UTSA), sheds light on how dopamine cells in the brain signal the passage of time. Wanat's study used a technique called voltammetry to record dopamine release in rodents trained using Pavlovian conditioning. This task used two different tones that both predicted the delivery of a food reward. One tone was presented only after a short wait while the other tone was presented only after a long wait. Wanat and colleagues found that more dopamine was released to the short wait tone. These results highlight that when dopamine neurons respond to cues, faster is better.

"The big question that we're focusing on is to identify the brain signals that influence the decisions we make," Wanat said. "Many decisions are based upon comparing the value between cues associated with different rewards. There is a lot of evidence to suggest that these dopamine signals and external cues provide useful value-related signals that could inform our decisions to engage in a behavior."

While Wanat and his collaborators are interested in studying how dopamine release is involved with cues triggering behavior, their work could also inform the understanding of drug addiction, which is closely intertwined with dopamine. Drug addiction can "hijack" the brain regions where dopamine is released. "By figuring out how the dopamine system works in normal and abnormal circumstances, we could potentially identify important changes and the ways that could target the dopamine system to rectify the consequences of those behaviors," Wanat said.

"A lot has been said about the role of dopamine in reward, but reward is only really important in the context of making choices. Dr. Wanat's experiments allow direct measurement of dopamine acting in the brain during the process of choosing, and reveals how the brain decides the values of our choices," said Charles Wilson, Ewing Halsell Distinguished Chair in Biology.

Wanat's overarching research focuses on the brain's relationships with memory, stress and drug addiction and how those components interact with each other. He is a member of the UTSA Neurosciences Institute, a multidisciplinary research organization for integrated brain studies with the mission to foster a collaborative community of scientists committed to studying the biological basis of human experience and behavior and the origin and treatment of nervous system diseases.

Wanat is one of 40 brain health researchers at UTSA, a group that includes experts in neurodegenerative disease, brain circuits and electrical signaling, traumatic brain injury, regenerative medicine, stem cell therapies, medicinal chemistry, neuroinflammation, drug design and psychology. Together, they are collaborating on complex, large-scale research producing a greater understanding of the brain's complexity and the factors that cause its decline.
-end-


University of Texas at San Antonio

Related Dopamine Articles:

Significant differences exist among neurons expressing dopamine receptors
An international collaboration, which included the involvement of the research team from the Institut de Neurociències of the UAB (INC-UAB), has shown that neurons expressing dopamine D2 receptors have different molecular features and functions, depending on their anatomical localization within the striatum.
How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.
Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.
Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.
Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.
Blocking dopamine weakens effects of cocaine
Blocking dopamine receptors in different regions of the amygdala reduces drug seeking and taking behavior with varying longevity, according to research in rats published in eNeuro.
How chronic inflammation may drive down dopamine and motivation
A new computational method will allow scientists to measure the effects of chronic inflammation on energy availability and effort-based decision-making.
Dopamine regulates sex differences in worms
Dopamine is responsible for sex-specific variations in common behaviors, finds a study of worm movements published in JNeurosci.
Dopamine conducts prefrontal cortex ensembles
New research in rodents reveals for the first time how dopamine changes the function of the brain's prefrontal cortex.
Dopamine modulates reward experiences elicited by music
New study in Proceedings of the National Academy of Science reveals causal link between dopamine and human reward response to music listening.
More Dopamine News and Dopamine Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.