Nav: Home

Gamma-ray burst detection just what OSU researchers exclusively predicted

October 16, 2017

CORVALLIS, Ore. - More than a month before a game-changing detection of a short gamma-ray burst - a finding announced today - scientists at Oregon State University predicted such a discovery would occur.

Scientists from U.S. and European collaborations converged on the National Press Club in Washington, D.C., today to say they've detected an X-ray/gamma-ray flash that coincided with a burst of gravitational waves, followed by visible light from a new cosmic explosion called a kilonova.

Gravitational waves were first detected in September 2015, and that too was a red-letter event in physics and astronomy; it confirmed one of the main predictions of Albert Einstein's 1915 general theory of relativity and earned a Nobel prize for the scientists who discovered them.

"A simultaneous detection of gamma rays and gravitational waves from the same place in the sky is a major milestone in our understanding of the universe," said Davide Lazzati, a theoretical astrophysicist in the OSU College of Science. "The gamma rays allow for a precise localization of where the gravitational waves are coming from, and the combined information from gravitational and electromagnetic radiation allows scientists to probe the binary neutron star system that's responsible in unprecedented ways. We can tell things like which galaxy the waves come from, if there are other stars nearby, and whether or not the gravitational waves are followed by visible radiation after a few hours or days."

Collaborators from the Laser Interferometer Gravitational-Wave Observatory, known as LIGO, and the European Gravitational Observatory's Virgo team on Aug. 17, 2017, detected gravitational waves - ripples in the fabric of space-time - produced by the coalescence of two neutron stars.

Roughly two seconds later, NASA's Fermi Gamma-ray Space Telescope detected a short flash of X- and gamma rays from the same location in the sky.

"The Fermi transient is more than 1,000 times weaker than a 'normal' short gamma-ray burst and has the characteristics that we predicted," Lazzati said. "No other prediction of such flashes had been made. Just by pen and paper almost, we could say hey, we might see the bursts, even if they're not in a configuration that makes them obvious."

On July 6, Lazzati's team of theorists had published a paper predicting that, contrary to earlier estimates by the astrophysics community, short gamma-ray bursts associated with the gravitational emission of binary neutron star coalescence could be detected - whether or not the gamma-ray burst was pointing at Earth.

The paper appeared in the journal Monthly Notices of the Royal Astronomical Society.

"X- and gamma rays are collimated, like the light of a lighthouse, and can be easily detected only if the beam points toward Earth," Lazzati said. "Gravitational waves, on the other hand, are almost isotropic and can always be detected. We argued that the interaction of the short gamma-ray burst jet with its surroundings creates a secondary source of emission called the cocoon. The cocoon is much weaker than the main beam and is undetectable if the main beam points toward our instruments. However, it could be detected for nearby bursts whose beam points away from us."

Since the first gravitational wave discovery, there have been three more confirmed detections, including the one from August that was jointly seen by scientists from the LIGO and Virgo groups.

"All observations until the last one were from the coalescence of binary black hole systems," Lazzati said. "While these systems are interesting, they are dark in any other form of radiation and relatively little can be understood from them compared to binary neutron star systems.

"It's a really lucky set of circumstances for a theorist, where you have a working theory to use to make predictions and new instruments such as LIGO and Virgo coming online to test them," Lazzati said. "Scientists don't make predictions because we want to be right - we make predictions because we want to test them. Even if we're wrong, we're still learning something - but it's much more exciting to be right."

The term neutron star refers to the gravitationally collapsed core of a large star; neutron stars are the smallest, densest stars known. According to NASA, neutron stars' matter is packed so tightly that a sugar-cube-sized amount of it weighs in excess of a billion tons.
-end-


Oregon State University

Related Gamma Rays Articles:

APS tip sheet: correlating matter's distribution in the universe with gamma rays
Scientists present the first direct cross-correlation between dark matter and gamma ray emissions.
APS tip sheet: High energy gamma rays
Nine Galactic sources are the highest-energy gamma -ray sources ever detected, which could suggest the presence of Galactic accelerators.
First detection of gamma-ray burst afterglow in very-high-energy gamma light
An international team of researchers observe a gamma-ray burst, an extremely energetic flash following a cosmological cataclysm, emitting very-high-energy gamma-rays long after the initial explosion.
Gamma-ray bursts with record energy
The strongest explosions in the universe produce even more energetic radiation than previously known: Using specialised telescopes, two international teams have registered the highest energy gamma rays ever measured from so-called gamma-ray bursts, reaching about 100 billion times as much energy as visible light.
Hubble studies gamma-ray burst with highest energy ever seen
NASA's Hubble Space Telescope has given astronomers a peek at the location of the most energetic outburst ever seen in the universe -- a blast of gamma-rays a trillion times more powerful than visible light.
The highest energy gamma rays discovered by the Tibet ASgamma experiment
The Tibet ASgamma experiment, a China-Japan joint research project, has discovered the highest energy cosmic gamma rays ever observed from an astrophysical source - in this case, the 'Crab Nebula.' The experiment detected gamma rays ranging from > 100 Teraelectron volts (TeV) to an estimated 450 TeV.
Thunderbolt of lightning, gamma rays exciting
University of Tokyo graduate student Yuuki Wada with colleagues from Japan discover a connection between lightning strikes and two kinds of gamma-ray phenomena in thunderclouds.
X and gamma rays --Even more powerful
International group of researchers including scientists from Skoltech have invented a new method for the generation of intense X and gamma-ray radiation based on Nonlinear Compton Scattering.
Newly detected microquasar gamma-rays 'call for new ideas'
The first-ever detection of highly energetic radiation from a microquasar has astrophysicists scrambling for new theories to explain the extreme particle acceleration.
Mountaintop observatory sees gamma rays from exotic Milky Way object
The High-Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) collaboration has detected highly energetic light coming from a microquasar -- a black hole that gobbles up stuff from a companion star and blasts out powerful jets of material.
More Gamma Rays News and Gamma Rays Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.