Nav: Home

Gravitational waves detected after collision of neutron stars 120 million light years away

October 16, 2017

On August 17, 2017, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors in Louisiana and Washington and at the Virgo detector in Italy detected the first "ripples in space," or gravitational waves, produced by the merger of two ancient remnants of stars known as neutron stars.

The 2017 Nobel Prize in Physics was awarded to the creators of the LIGO instrument and its detection of gravitational waves. Scientists at Tel Aviv University are racing to use results from the LIGO experiments to expand our understanding of the universe, with the new discovery appearing today in Science and Nature. An additional TAU study is appearing in the Astrophysical Journal.

"This is a milestone in the growing effort by scientists worldwide to unlock the mysteries of the universe and of earth," says Prof. Ehud Nakar of TAU's Raymond and Beverly Sackler School of Physics and Astronomy, who together with his graduate student Ore Gottlieb led the theoretical analysis for the new studies on the discovery appearing today in Science and Nature.

The studies were led by Dr. Yair Arcavi, who joins TAU's School of Physics and Astronomy next year from UC Santa Barbara, in collaboration with Prof. Dovi Poznanski, Prof. Dan Maoz and their students at TAU's School of Physics and Astronomy.

Building on Einstein

The existence of gravitational waves was first predicted by Albert Einstein a century ago. They afford insight into an event that took place in a galaxy 120 million light years away and provide valuable information on the evolution of exploding neutron stars, as well as the origin of gold, uranium and other heavy metals on earth.

"It is difficult to exaggerate the importance of this discovery," says Prof. Poznanksi. "Until recently, we could observe the universe only through light waves that reached us. This new ability to study gravitational waves is analogous to a sense of touch. It's as though we now have the ability to explore the universe through both sight and touch."

"This discovery has allowed astronomers to combine gravitational waves with light and produce a detailed model of the emission for the first time. This introduces a new era in astronomy," says Gottlieb.

A neutron star forms when a star much bigger and brighter than the sun exhausts its thermonuclear fuel supply and explodes into a violent supernova. The explosion of neutron stars, which are made almost entirely of neutrons, was detected by multiple telescopes across the electromagnetic spectrum, from gamma rays and visible light to radio waves.

"This is only the beginning," Prof. Maoz notes. "We expect many surprising discoveries in the coming years."

GROWTH (Global Relay of Observatories Watching Transients Happen) is an international collaborative project in astronomy, funded by the National Science Foundation under PIRE Grant No. 1545949, with additional support from the Japan Society for the Promotion of Science; the Ministry of Science & Technology in Taiwan; and the Science and Engineering Research Board, Department of Science and Technology in India. Led by the California Institute of Technology, GROWTH is a partnership among 14 institutions in the USA, Japan, Taiwan, India, Israel, Sweden, Germany and the UK.
-end-
American Friends of Tel Aviv University (AFTAU) supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. For three years in a row, TAU ranked 9th in the world, and first in Israel, for alumni going on to become successful entrepreneurs backed by significant venture capital, a ranking that surpassed several Ivy League universities. To date, 2,400 patents have been filed out of the University, making TAU 29th in the world for patents among academic institutions.

American Friends of Tel Aviv University

Related Gravitational Waves Articles:

Gravitational lensing provides a new measurement of the expansion of the universe
Amid ongoing uncertainty around the value of the Hubble Constant, uncertainty largely created by issues around measuring distances to objects in the galaxy, scientists who used a new distance technique have derived a different Hubble value, one 'somewhat higher than the standard value,' as Tamara Davis describes it in a related Perspective.
Gravitational waves leave a detectable mark, physicists say
New research shows that gravitational waves leave behind plenty of 'memories' that could help detect them even after they've passed.
DIY gravitational waves with 'BlackHoles@Home'
Researchers hoping to better interpret data from the detection of gravitational waves generated by the collision of binary black holes are turning to the public for help.
Gravitational waves will settle cosmic conundrum
Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international team that includes University College London (UCL) and Flatiron Institute cosmologists.
LIGO and Virgo announce four new gravitational-wave detections
The LIGO and Virgo collaborations have now confidently detected gravitational waves from a total of 10 stellar-mass binary black hole mergers and one merger of neutron stars, which are the dense, spherical remains of stellar explosions.
Gravitational waves from a merged hyper-massive neutron star
For the first time astronomers have detected gravitational waves from a merged, hyper-massive neutron star.
Gravitational waves could shed light on dark matter
Black holes colliding, gravitational waves riding through space-time - and a huge instrument that allows scientists to investigate the fabric of the universe.
In five -10 years, gravitational waves could accurately measure universe's expansion
In a new paper published in Nature, three University of Chicago scientists estimate that given how quickly LIGO researchers saw the first neutron star collision, they could have a very accurate measurement of the rate of the expansion of the universe within five to ten years.
All in the family: Kin of gravitational wave source discovered
According to new research, an object named GRB150101B -- first reported as a gamma-ray burst in 2015 -- shares remarkable similarities with GW170817, the neutron star merger discovered by LIGO and observed by multiple light-gathering telescopes in 2017. The new analysis, published on Oct.
RUDN mathematicians confirmed the possibility of data transfer via gravitational waves
RUDN mathematicians analyzed the properties of gravitational waves in a generalized affine- metrical space (an algebraic construction operating the notions of a vector and a point) similarly to the properties of electromagnetic waves in Minkowski space-time.
More Gravitational Waves News and Gravitational Waves Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab