Nav: Home

Students in right place, right time witness first-ever detected neutron star collision

October 16, 2017

In August, Kaitlin Rasmussen and Devin Whitten, third-year physics graduate students at the University of Notre Dame, were settling into their observation at the Las Campanas Observatory atop a rocky mountain in Las Campanas, Chile, when they saw something unexpected.

Before they arrived, a brief flash of gamma rays was detected 143 million light-years away in a galaxy located in the constellation of Hydra. Accompanying the bright burst were gravitational waves detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

All data pointed to a never-before-seen event: the merger of two neutron stars. The light emitted from the collision peaked while Rasmussen and Whitten were on-site.

New research published in Science details perhaps one of the biggest discoveries so far in the field of astrophysics. Rasmussen and Whitten, along with Timothy Beers, chair of astrophysics at Notre Dame, and Vinicius Placco, research assistant professor, contributed to studies published on the collision.

"It's hard to describe the feeling of seeing something with your own eyes that is completely new to science," Rasmussen said. "It's incredible to know that you are one of the few people on the planet, in history, to ever witness a new type of astronomical event. And being included on the paper was a tremendous honor."

Neutron star mergers have proven to be responsible, either in whole or in part, for the formation of nearly half the metals heavier than iron in our solar system including gold, platinum and uranium.

The students had been scouring for a type of star enhanced by a set of reactions called the rapid-neutron capture process, or r-process, on the 2.5-meter Irénée du Pont Telescope owned by the Carnegie Institution for Science.

The concept of the r-process was first suggested in 1957. Astrophysicists theorized that the universe's heaviest elements are formed after a set of reactions, and later suggested this could possibly occur when two neutron stars collide.

Neutron stars -- the densest stars astronomers can visually observe -- result when a supernova collapses and its electrons and protons melt into a neutron core only a few miles wide, yet weighing more than two suns. When two such stars collide, neutron-heavy metals spray outward throughout the universe. The metals become incorporated into the gas clouds of newly minted stars, which is what happened when our sun formed billions of years ago. The same cloud eventually forms planets, like Earth, where the metals are also found.

Light from the collision peaked and then cooled quickly, but continued to radiate for about three weeks. "The best analogy to this collision is fireworks," Beers said. "Initially nothing happens, but then it reaches a critical temperature at which the element that gives off the particular color ignites. So it very rapidly brightens, then falls off."

Placco said that for Whitten and Rasmussen, it was a matter of being in the right place at the right time.

"They're assigned time on the telescope on a semester-by-semester basis, and on a given semester, they could have been there any two nights," he said. "But they were there exactly those two nights."

Now that scientists know neutrons can create the heavy elements through the r-process, they'll redouble efforts to determine whether these neutron star collisions are the only source of those elements, or if another astrophysical event, like a particularly energetic type of supernova explosion, also has a hand in the process, according to Beers.

And there's always that next step in science, when a new discovery unearths even more questions to be explored and answered. Rasmussen and Whitten will move on to answer other astronomical questions and search for even more stars enhanced with r-process elements. But they'll always have the experience of watching a major astronomical event many astrophysicists waited decades to witness.

"Gravitational wave observations represent a new era of astronomy," Whitten said. "We're detecting gravitational events beyond our Milky Way; that's simply amazing. The potential for this new mode of observation to inform us about the galaxy we live in, as well as our local universe, promises much, much more to come."

The research was funded by a grant through the Luksburg Foundation, which encourages Notre Dame partnerships with the Pontifica Universidad Católica de Chile.
-end-


University of Notre Dame

Related Astrophysics Articles:

Hubble studies gamma-ray burst with highest energy ever seen
NASA's Hubble Space Telescope has given astronomers a peek at the location of the most energetic outburst ever seen in the universe -- a blast of gamma-rays a trillion times more powerful than visible light.
NASA's TESS presents panorama of southern sky
The glow of the Milky Way -- our galaxy seen edgewise -- arcs across a sea of stars in a new mosaic of the southern sky produced from a year of observations by NASA's Transiting Exoplanet Survey Satellite (TESS).
Giant exoplanet around tiny star challenges understanding of how planets form
An international team of researchers with participation from the University of Göttingen has discovered the first large gas giant orbiting a small star.
'Ringing' black hole validates Einstein's general relativity 10 years ahead of schedule
For the first time, astrophysicists have heard a black hole ringing like a bell.
A family of comets reopens the debate about the origin of Earth's water
Where did the Earth's water come from? Although comets, with their icy nuclei, seem like ideal candidates, analyses have so far shown that their water differs from that in our oceans.
Astronomers discover 2,000-year-old remnant of a nova
For the first time, a European research team involving the University of Göttingen has discovered the remains of a nova in a galactic globular cluster.
Dark matter exists: The observations which question its presence in galaxies disproved
As fascinating as it is mysterious, dark matter is one of the greatest enigmas of astrophysics and cosmology.
Astrophysics: First detailed observations of material orbiting close to a black hole
ESO's GRAVITY instrument confirms black hole status of the Milky Way center.
Time-lapse shows thirty years in the life of supernova 1987A
Yvette Cendes, a graduate student with the University of Toronto and the Leiden Observatory, has created a time-lapse showing the aftermath of Supernova 1987A over a 25-year period, from 1992 to 2017.
Renovations lead to big improvement at Nuclear Astrophysics lab
The nuclear reactions that form stars are often accompanied by astronomically high amounts of energy, a challenge for nuclear astrophysicists trying to study these reactions; the chances of re-creating such a spark are unfathomably low.
More Astrophysics News and Astrophysics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab