Nav: Home

Spinning strands hint at folding dynamics

October 16, 2017

An engineered string of micronwide beads may take up the slack where computer modeling fails researchers who study the bending, folding and other movements of polymers or biomolecules like actin and DNA.

Rice University chemical and biomolecular engineer Sibani Lisa Biswal and her students -- lead author Steve Kuei, a graduate student, and co-author Burke Garza, an undergraduate -- created strings of polystyrene beads enhanced with iron to magnetize them and with streptavidin, a natural protein that serves as a springy linker between them.

They placed the strings into solutions and manipulated them with a rotating magnetic field. Some strands were made to be stiff, some a little bendy and some much more flexible. By applying an outside magnetic force, the researchers were able to see how each type of string reacted and compared the results with computer models of strings that had the same properties.

Biswal said the new platform lets researchers study how strings of various types behave under dynamic conditions in a scalable way that isn't possible with simulations because of the high computational cost. It could benefit researchers who study proteins, DNA and RNA in biological systems or those who study the fluid properties of polymers that entangle to create gels or the ordering and packing density of liquid crystals.

"I can see people using this to study the practicalities of building, say, micro robots with wagging tails, or robots that can coil up," Biswal said. Because the technique could model flagellar motion in a fluid environment, it might also help make artificial organisms possible, she said.

The research appears in the American Physical Society journal Physical Review Fluids.

The Rice team knew there was already plenty of information available about rigid and flexible strings, filaments and fibers and how they moved due to Brownian motion or in response to shear or other forces. But there was very little data about semiflexible fibers like actin, carbon nanotubes and cilia.

"There's a lot of interest in materials that fold into complex geometries, but even simple things like tying a knot at the macroscale are very difficult at the microscale," Biswal said. "So we developed a method to let us look at the dynamic forces involved. The ability to engineer different flexibilities into this material is its real power."

The strings isolated in liquid could be shaken or stirred, but the Rice team built a device to rotate the magnetic field that touched each bead with gentle force. They observed strings that reacted in different ways depending on the level of built-in flexibility and/or elasticity.

Rigid rods simply rotated in concert with the magnetic field. Those with a bit more flexibility "wagged" their tails in the moving field, and the centers would turn as the tails relaxed. Longer and more flexible strings were prone to coiling, eventually compacting into a form with less drag that allowed them to behave like their rigid brethren.

"Most of the time strings are open in structure until you turn on the rotating field and they crumple up," Biswal said. "That changes the underlying fluid properties, because they go from taking up a lot of space to taking up very little. A fluid with strings could go from behaving like honey to behaving like water."

Such effects can't be seen directly with proteins that are both several orders of magnitude smaller and yet have too many beads - the residues - to simulate their folding easily, Biswal said.

"There's been some work with fluorescently labeled DNA and other biofilms like actin, but they can't get that bead-to-bead resolution that we can with our method," she said. "We can actually see the positions of all our particles."

Strings in the current study had up to 70 beads. The researchers plan to make chains up to 1,000 beads for future studies on more complicated folding dynamics.
-end-
Biswal is an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering.

The National Science Foundation (NSF) supported the work directly and through use of the DAVinCi supercomputer administered by Rice's Center for Research Computing; the resources were procured in partnership with Rice's Ken Kennedy Institute for Information Technology. The researchers also used the Extreme Science and Engineering Discovery Environment supported by the NSF and the Texas Advance Computing Center at the University of Texas at Austin.

Read the abstract at https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.2.104102

This news release can be found online at http://news.rice.edu/2017/10/16/spinning-strands-hint-at-folding-dynamics/

Follow Rice News and Media Relations via Twitter @RiceUNews
Video:

1002_STRINGS%20VIDEO

https://youtu.be/N06omPgwnzc

Related materials:

Biswal Lab:
http://www.ruf.rice.edu/~biswalab/Biswal_Research_Group/Welcome.html

George R. Brown School of Engineering: https://engineering.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Dna Articles:

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab