Nav: Home

SUTD researchers developed single cell level sorting technology using sound waves

October 16, 2017

Sound wave enables the sensation of hearing, and is an important way of communicating in the animal world. In physics, sound is considered as a mechanical vibration that can propagate in gases, liquids and solids. A research team from the Singapore University of Technology and Design (SUTD), led by Assistant Professor Dr Ye Ai, is studying the interactions between ultrasound (beyond the audible limit of human hearing) and micron-sized objects (e.g. biological cells) suspended in aqueous solutions. Dr Ai's research team recently developed a highly accurate single cell level sorting technology using a highly focused sound wave beam (50 μm wide roughly ¼ of a single human hair's diameter). This new cell manipulation technology enables highly accurate isolation of rare cell populations in complex biological samples. More concisely, it provides the potential of finding a single cell in a million.

Single cell analysis, for example the ability to examine DNA mutations at single cell level, is essential for assessing the genetic heterogeneity of cancers among different patients, and thus holds great potential of advancing towards precision medicine for cancer treatment. The key to implementing single cell analysis is the ability to isolate single cells from highly heterogeneous biological samples. According to a recent market analysis conducted by Markets and Markets Research Pte Ltd, the global market size of cell sorting is USD 3.57 billion in 2016 and is expected to reach USD 7.89 billion by 2021 with a compound annual growth rate (CAGR) of 17.2%. Asia is expected to be the fastest-growing market in the next five years owing to increasing government investments in biotechnology and the healthcare sector.

Currently, sorting and isolation of rare cell populations is typically performed using fluorescence-activated cell sorting (FACS) system, a technology developed nearly 60 years ago. However, current FACS systems are complex, bulky, and expensive, requiring highly trained personnel for operation, and may produce bio-hazardous aerosols in open environments. Microfluidics technology capable of precise cell manipulation has great potential to reinvent the next-generation cell sorting technology.

In this research, Dr Ai's team designed and built an acoustic sorting system that included a disposable microfluidic channel, a reusable sound wave generator and a fluorescence detection module. Target cells with fluorescent labels specific to their surface biomarkers can be recognized by the fluorescence detection module. Upon the detection of a single target cell, the system activates the sound wave generator to produce a pulsed highly focused sound wave beam that can rapidly deflect the target cell to the collection outlet. The sound wave beam with a width of 50 μm is highly localized, enabling accurate sorting at the single cell level.

Principal investigator, Dr Ai said: "Compared to conventional FACS systems, the merits of this cell sorting technology includes a substantially simplified sorting mechanism that shrinks the instrument size, reduces its complexity and substantially lessens costs. Not only that, but it also enables more accurate single cell level sorting and leaves no damage on target cells because sound waves are much gentler than electric fields widely used in conventional FACS systems."

This new cell sorting technology has been published in Lab on a Chip, a top-tier journal focused on research in innovative devices and applications at the micro- and nanoscale. Two SUTD graduate students (Zhichao Ma and Yinning Zhou) and a postdoctoral researcher (David Collins) participated in this project.

Dr Ai's team has developed and demonstrated a fully functional laboratory prototype system, and is currently seeking grants to commercialize this technology as a benchtop instrumentation that has a wide application in biological research, clinical diagnosis and cell-based therapeutics.
-end-


Singapore University of Technology and Design

Related Technology Articles:

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
How technology use affects at-risk adolescents
More use of technology led to increases in attention, behavior and self-regulation problems over time for adolescents already at risk for mental health issues, a new study from Duke University finds.
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
More Technology News and Technology Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab