Exploring new spintronics device functionalities in graphene heterostructures

October 16, 2018

Graphene Flagship researchers have shown in a paper published in Science Advances how heterostructures built from graphene and topological insulators have strong, proximity induced spin-orbit coupling which can form the basis of novel information processing technologies.

Spin-orbit coupling is at the heart of spintronics. Graphene's spin-orbit coupling and high electron mobility make it appealing for long spin coherence length at room temperature. Graphene Flagship researchers from Chalmers University of Technology (Sweden), Catalan Institute of Nanoscience and Nanotechnology - ICN2 (Spain), Universitat Autònoma de Barcelona (Spain) and ICREA Institució Catalana de Recerca i Estudis Avançats (Spain) showed a strong tunability and suppression of the spin signal and spin lifetime in heterostructures formed by graphene and topological insulators. This can lead to new graphene spintronic applications, ranging from novel circuits to new non-volatile memories and information processing technologies.

"The advantage of using heterostructures built from two Dirac materials is that, graphene in proximity with topological insulators still supports spin transport, and concurrently acquires a strong spin-orbit coupling," said Associate Professor Saroj Prasad Dash, from Chalmers University of Technology.

"We do not just want to transport spin we want to manipulate it," said Professor Stephan Roche from ICN2 and deputy leader of the Graphene Flagship's spintronics Work-Package, "the use of topological insulators is a new dimension for spintronics, they have a surface state similar to graphene and can combine to create new hybrid states and new spin features. By combining graphene in this way we can use the tuneable density of states to switch on/off - to conduct or not conduct spin. This opens an active spin device playground."

The Graphene Flagship, from its very beginning, saw the potential of spintronics devices made from graphene and related materials. This paper shows how combining graphene with other materials to make heterostructures opens new possibilities and potential applications.

"This paper combines experiment and theory and this collaboration is one of the strengths of the Spintronics Work-Package within the Graphene Flagship," said Roche.

"Topological insulators belong to a class of material that generate strong spin currents, of direct relevance for spintronic applications such as spin-orbit torque memories. As reported by this article, the further combination of topological insulators with two-dimensional materials like graphene is ideal for enabling the propagation of spin information with extremely low power over long distances, as well as for exploiting complementary functionalities, key to further design and fabricate spin-logic architectures," said Kevin Garello from IMEC, Belgium who is leader of the Graphene Flagships Spintronics Work-Package.

Professor Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship, and Chair of its Management Panel added "This paper brings us closer to building useful spintronic devices. The innovation and technology roadmap of the graphene Flagship recognises the potential of graphene and related materials in this area. This work yet again places the Flagship at the forefront of this field, initiated with pioneering contributions of European researchers."
-end-


Graphene Flagship

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.