Findings bridge knowledge gap between pheromone sensitivity and courtship

October 16, 2019

Just as humans use their noses for the sense of smell, insects such as fruit flies use their antennae--covered in sensory hairs called sensilla--for olfaction. In flies, the sense of smell plays a fundamental role in courtship.

Nearly 10 years ago, scientists made a significant leap in characterizing insect olfaction when they identified unique properties of the receptor proteins involved. They showed that when odor particles are detected, receptors of the insect "olfactory receptor neurons" (ORNs) function as ion channels; odorant activation directly leads to an influx of positive ions that allows cells to fire, essentially making these channels gateways for ionic flow. But in the past decade little progress has been made in understanding how the strengths of these neuronal responses are regulated.

Now, neurobiologists at the University of California San Diego have made a series of discoveries about fruit fly olfactory processing, including solving a long-standing puzzle of whether and how courtship-promoting signals are amplified by these neurons. Staff Research Associate Renny Ng, Assistant Professor Chih-Ying Su and colleagues published their results on Oct. 16, 2019 in the journal Neuron.

The researchers identified the role of a channel permeable to sodium ions. Known as PPK25, the channel amplifies courtship signals in the ORNs of male flies. Mechanistically, these findings draw further similarities between invertebrate olfactory neurons and vertebrate ORNs, which also undergo signal amplification. Biologically, PPK25 heightens males' sensitivity to their mates' odors at the age of peak fertility, thus promoting courtship when flies are most fertile.

"Given its evolutionary importance, courtship behavior is under tight hormonal regulation. We find that PPK25 expression is upregulated in those neurons by a reproductive hormone," said Su, a faculty member in the Division of Biological Sciences Section of Neurobiology. "The expression level in turn determines the ORN response magnitude to impact courtship behavior. Without such amplification, male courtship is severely compromised."

The new findings help neuroscientists bridge a knowledge gap in sensory transduction and opens doors to future research on the impact of sexual cues at the level of individual neurons.

PPK25 is a member of a superfamily of ion channels that may also employ the same amplification mechanism. The study therefore carries implications across several species beyond fruit flies, including worms, mosquitoes and even humans. In principle, the amplification mechanism unraveled in the new study could operate in other sensory modalities such as touch, temperature and hearing.
The paper was coauthored by Secilia Salem (undergraduate assistant), Shiuan-Tze Wu (graduate student), Hui-Hao Lin (postdoctoral fellow), Andrew Shepherd (research assistant) and Jing Wang (professor) of the Section of Neurobiology; and Meilin Wu (research scientist) and William Joiner (professor) of the Department of Pharmacology.

University of California - San Diego

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to