Cascades of gas around young star indicate early stages of planet formation

October 16, 2019

Washington, DC-- What does a gestating baby planet look like? New research in Nature by a team including Carnegie's Jaehan Bae investigated the effects of three planets in the process of forming around a young star, revealing the source of their atmospheres.

In their youth, stars are surrounded by a rotating disk of gas and dust from which planets are born. Studying the behavior of the material that makes up these disks can reveal new details about planet formation, and about the evolution of a planetary system as a whole.

The disk around a young star called HD 163296 is known to include several rings and gaps. Using 3-D visualizations taken by the Atacama Large Millimeter/submillimeter Array, or ALMA--a radio telescope made up of 66 antennas--Bae teamed with University of Michigan's Richard Teague and Ted Bergin to determine the velocities of some of the gas spinning in this disk.

"We were struck by how dynamic the disk is," Bae said. "There's a lot going on around this star."

They found three areas on either side of which the gas appears to be cascading into gaps in the disk, a good indication that planets could be forming in these locations. They were spotted at 87, 140, and 237 astronomical units, or AUs, from the star, with an AU being the distance between the Earth and our Sun.

They tested these findings by creating a computational model of the stellar system and inserting three planets--one half Jupiter's mass, one equivalent to Jupiter, and one twice Jupiter's mass--at the same distances from HD 163296 as the gas disturbances found by ALMA. Their simulation indicated that the observed cascades of disk gas could be well explained by the existence of the three planets.

Last year, Teague, Bae, and Bergin were part of a team that used one-dimensional measurements of the velocity of gas in the same disk to demonstrate a new technique for finding young planets. This latest paper takes that tool to the next level, enabling even deeper understanding of the planet-formation process.

"This gives us a much more complete picture of planet formation than we ever dreamed," said Bergin.

Their efforts also confirmed a long-standing theory about how planets acquire their atmospheres.

"Planets form in the middle layer of the disk, the so-called midplane. This is a cold place, shielded from radiation from the star," explained lead author Teague. "We think that the gaps caused by planets bring in warmer gas from the more chemically active outer layers of the disk, and that this gas will form the atmosphere of the planet."

The next step is to determine the chemical composition of the gas added to planets' atmospheres during this formative period.

"Looking ahead, analyzing the movement of material in a disk around a young star could help us find exoplanets while they are still in their most-formative stages," Bae concluded. "This could really help us understand how the architecture of a planetary system comes to be and maybe even unlock mysteries about the evolution of our own Solar System."
-end-
This work was supported, in part, by NASA.

ALMA is a partnership of European Southern Observatory, the U.S. National Science Foundation, and the Japanese National Institutes of Natural Sciences, together with the Canadian National Research Council, the Academia Sinica Institute of Astronomy and Astrophysics inTaiwan, and the Korea Astronomy and Space Science Institute, in cooperation with Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities, Inc/National Radio Astronomy Observatory, and National Astronomical Observatory of Japan. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Computing resources provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing Division at Ames Research Center and by the Extreme Science and Engineering Discovery Environment, which is supported by the U.S. National Science Foundation.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.