Nav: Home

Surrey is leading the way in perovskite tandem solar cells

October 16, 2020

Scientists from the University of Surrey have revealed the significant improvements they are making in perovskite-based solar cells.

Perovskite solar cells have shown significant potential in reaching the efficiency limit of the widely used solar cells currently on the market by absorbing light in a broader range of wavelengths. Industry has also been paying close attention to the development of perovskite-based cells thanks to their low-cost and simple fabrication, and their efficient combination with other types of solar cells to produce tandems.

Perovskite solar cells have emerged as the heir apparent to silicon-based solar cells because of their high-power energy conversion efficiency, low development cost, and ability to be ultra-lightweight. Named after a naturally occurring mineral that shares a structurally similar chemical formula, perovskites are synthetic composites that have three-dimensional lattice crystal structures.

In a front-cover paper published by the top American Chemical Society journal Chemical Reviews, the team from Surrey's Advanced Technology Institute (ATI) summarise the recent progress in improving perovskite tandem solar cells power conversion efficiencies, including thickness adjustment of perovskite , improving the transparency of perovskite solar cells, more effective protective layers and much more. The team also highlight measurement techniques, large-scale fabrication, commercialization development and lead-related environmental issues.

In the paper, the team offer a roadmap for further progress, including strategies for the enhancement of the power conversion efficiencies, stability and reliability assessments, and potential applications.

Dr Wei Zhang, the corresponding author and Senior Lecturer in Energy Technology at ATI, said: "Perovskite tandem solar cells are at the forefront of next-generation photovoltaic technologies. Our timely review summarizes the fundamentals of this exciting research field and future applications, which are expected to accelerate the commercialization of this low-cost and high-efficiency photovoltaic product as a major competitor to the traditional crystalline silicon solar cells in the next few years."

Professor Hui Li, first-author and Visiting Professor and Advanced Newton Fellow at ATI, said: "We are excited to offer this review that is showing great potential for moving our planet towards green energy."

Professor Ravi Silva, Director of ATI at the University of Surrey, said: "We are happy to see this wonderful research finally being used for real-world applications and we look forward to continuing our collaboration on perovskite tandem solar cells, which is a research priority area at ATI."

University of Surrey

Related Solar Cells Articles:

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.
Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.
On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.
For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.
Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.
Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.
Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.
Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
More Solar Cells News and Solar Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.