Nav: Home

A new strategy for siRNA stabilization by an artificial cationic oligosaccharide

October 16, 2020

RNA interference is a gene regulatory mechanism in which the expression of specific genes is downregulated by endogenous microRNAs or by small interfering RNAs (siRNAs). Although siRNAs have broad potential for gene-silencing therapy, their instability is one of the difficulties to develop siRNA-based agents. To improve their stability, most of the developed siRNA-based drugs are chemically modified in their nucleotides or phosphodiester linkages. However, chemical modification is not a perfect strategy for siRNA stabilisation because extensive modification may interrupt the gene-silencing activity of siRNAs and also induce cytotoxicity.

siRNAs consist of oligonucleotide duplexes of 21-23 bases and form an A-form helix structure in which the major grooves have highly negative potential, therefore cationic molecules that can bind to the major grooves are expected to stabilise the RNA duplexes and protect them against cleavage in the body fluid. Based on this idea, organic chemists at Tokyo University of Science have recently synthesised an artificial cationic oligosaccharide, oligodiaminogalactose 4mer (ODAGal4), that can preferentially bind to the major grooves of RNA duplexes for siRNA stabilisation (Iwata, RI. et al. Org. Biomol. Chem. https://doi.org/10.1039/c6ob02690g (2017)).

Now, Atsushi Irie and his colleague at Tokyo Metropolitan Institute of Medical Science in collaboration with the team at Tokyo University of Science have developed a new strategy for siRNA stabilisation using ODAGal4 combined with phosphorothioate modification of RNAs. In the study published online on 9th September in the Scientific Reports, the researchers have proved that ODAGal4 strongly enhances biological and thermal stability of siRNAs in vitro.

The researchers show that ODAGal4 has several unique characteristics for stabilising siRNAs. Firstly, ODAGal4 can improve stability of various siRNAs independent of nucleotide sequence because ODAGal4 binds to phosphodiester linkages of RNA duplexes but not to nucleobases of the nucleotides. In addition, importantly, ODAGal4 does not compromise gene-silencing activity of any siRNAs. This character of ODAGal4 is in sharp contrast to those of known chemical modifications, which may interrupt gene-silencing activity of siRNAs. ODAGal4, therefore, has great potential for siRNA stabilisation, being widely applicable to various siRNA-based drugs.

Secondly, the effect of ODAGal4 on siRNA stabilisation is further enhanced by chemical modification of the siRNAs; in particularly, ODAGal4 prominently improves stability of RNAs with phosphorothioate linkages. This improvement in siRNA stability is superior to that observed for other chemical modifications (e.g., 2'-O-methyl, locked nucleic acid and 2'-deoxy-2'-fluoro nucleotides) suggesting that ODAGal4 combined with phosphorothioate modification is highly effective for stabilising siRNAs.

Lastly, another striking property of ODAGal4 is its binding specificity to RNA duplexes; ODAGal4 binds to A-form RNA helix but not to B-form DNA helix nor to single-stranded RNA/DNA. Although various gene delivery systems consisting of cationic polymers have been developed to stabilise nucleotides, the molecular structures of the polymers are not designed to specifically bind to nucleotides. The binding of the polymers to nucleotides relies on the ionic interaction between them, and thereby the polycation complexes are prone to induce cytotoxicity due to nonspecific binding of the polymers to other biomolecules. In marked contrast, ODAGal4 escapes from causing cytotoxicity because of its restricted binding with high affinity to RNA duplexes.

"Our goal will be application of ODAGal4 for siRNA-based agents. Although we should study in vivo experiments to confirm and expand our findings, we emphasise that ODAGal4 has a great advantage as improving siRNA stability and has a potential for reducing total dose and frequency of administration of siRNA-based drugs in future application," concludes Atsushi Irie.
-end-
Other researchers who contributed to this study include Kazuki Sato, Rintaro Iwata Hara and Takeshi Wada, all of Tokyo University of Science; and Futoshi Shibasaki, of Tokyo Metropolitan Institute of Medical Science.

This work was supported by JSPS KAKENHI Grant.

Tokyo Metropolitan Institute of Medical Science

Related Polymers Articles:

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.
Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.
Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.
Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.
Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.
Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.
Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.
Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.
Mixing the unmixable -- a novel approach for efficiently fusing different polymers
Cross-linked polymers are structures where large molecular chains are linked together, allowing exceptional mechanical properties and chemical resistance to the final product.
Theoretical tubulanes inspire ultrahard polymers
Rice University engineers print 3D blocks based on theoretical tubulanes and find they're nearly as hard as diamond.
More Polymers News and Polymers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.