Nav: Home

Trees prefer the big city life

October 16, 2020

A team of researchers have examined whether urban red maples - a resilient native tree known to thrive in urban environments - acclimate to environmental shifts and whether that response is impacted by the size of the city.

They found that trees in larger cities are actually healthier and more productive than those in less dense areas.

To determine how trees respond to different urban intensities, the team - which includes researchers from the University of Delaware - compared forests in Newark, Del., to those in Philadelphia, Pa. In forest fragments that make up the FRAME network in each city, data was collected to measure tree size and age, foliage nitrogen signature, nutrient and heavy metal content, and stress-responding metabolites, as well as surrounding soil conditions.

Not only were the trees acclimated to urban conditions but the red maples in the higher density Philadelphia forests were actually healthier and more productive than those surrounded by less urbanization in Newark.

"We have different levels of nitrogen deposition due to fumes from vehicle tailpipes, construction materials are adding excess calcium into forest soils, carbon dioxide levels are elevated because of population density, and we have impervious surfaces like roads and buildings that are holding heat and warming up the city in a phenomenon we call urban heat island," said Covel McDermot, a University of Delaware alumnus and co-author of the study. "Our goal was to evaluate health and stress-indicating compounds in the leaves of red maple trees that face these conditions in forests embedded in a large, heavily urbanized city versus a small, fairly urbanized city."

People usually think that urban ecosystems are nutrient deficient, but we see that these systems have higher nutrient loads that support productivity.

For example, in Philadelphia there is a lot of construction using concrete. Concrete is a substance that contains calcium, magnesium and aluminum. As construction and deconstruction happen, as they often do in cities, these materials eventually break down and become available food sources for plants. Look at your wall. It's likely made of materials containing gypsum and those will eventually end up in the soil and become bioavailable to plants.

To build barriers to stressors like excessive heat or heavy metals, trees produce stress-shielding and signaling compounds which protect the chloroplast and mitochondria from oxidative stress, allowing the tree to flourish. However, there is a tradeoff in resources for growth and development versus permanent stress defense. Philadelphia soil conditions, unlike those in Newark that experienced degradation due to past agricultural practices, were more nutrient rich so those ecosystems held enough nitrogen to allow trees to produce additional stress-responding compounds while also growing into healthier, more productive forests.

McDermot hopes that this red maple study serves as the blueprint for future research on other species commonly found in urban systems.

"This gives us insight into planting the right trees in cities," McDermot said. "We can't just focus on beautification. We need to support ecological resilience. It's about prescribed greening -- planting the right tree species, in the right place, in the right soil conditions and for the right reasons."

University of Delaware

Related Nitrogen Articles:

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.
New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.
'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.
A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.
How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.
Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.