Nav: Home

Arctic Ocean sediments reveal permafrost thawing during past climate warming

October 16, 2020

Sea floor sediments of the Arctic Ocean can help scientists understand how permafrost responds to climate warming. A multidisciplinary team from Stockholm University has found evidence of past permafrost thawing during climate warming events at the end of the last ice age. Their findings, published in Science Advances, caution about what could happen in the near future: That Arctic warming by only a few degrees Celsius may trigger massive permafrost thawing, coastal erosion, and the release of the greenhouse gases carbon dioxide (CO2) and methane (CH4) into the atmosphere.

Arctic permafrost stores more carbon than the atmosphere does. When permafrost thaws, this carbon may be converted to greenhouse gases (CO2 and CH4) that then enter the atmosphere and may affect the climate system. To improve predictions of future greenhouse gas emissions from permafrost, scientists have started to look into the past, exploring how previous climate warming, for example at the end of the last ice age, affected permafrost and its vast pool of carbon.

"Our new study shows for the first time the full history of how warming at the end of the last ice age triggered permafrost thawing in Siberia. This also suggests the release of large quantities of greenhouse gases," says Jannik Martens, PhD student at Stockholm University and lead author of the study. "It appears likely that past permafrost thawing at times of climate warming, about 14,700 and 11,700 years ago, was in part also related to the increase in CO2 concentrations that is seen in Antarctic ice cores for these times. It seems that Arctic warming by only a few degrees Celsius is sufficient to disturb large areas covered by permafrost and potentially affect the climate system."

In the current study, the scientists used an eight meters long sediment core that was recovered from the sea floor more than 1 000 meters below the surface of the Arctic Ocean during the SWERUS-C3 expedition onboard the Swedish icebreaker Oden back in 2014. To reconstruct permafrost thawing on land, the scientists applied radiocarbon (14C) dating and molecular analysis to trace organic remains that once were released by thawing permafrost and then washed into the Arctic Ocean.

"From this core we also learned that erosion of permafrost coastlines was an important driving force for permafrost destruction at the end of the last ice age. Coastal erosion continues to the present day, though ten times slower than during these earlier rapid warming period. With the recent warming trends, however, we see again an acceleration of coastal erosion in some parts of the Arctic, which is expected to release greenhouse gases by degradation of the released organic matter," says Örjan Gustafsson, Professor at Stockholm University and leader of the research program. "Any release from thawing permafrost mean that there is even less room for anthropogenic greenhouse gas release in the earth-climate system budget before dangerous thresholds are reached. The only way to limit permafrost-related greenhouse gas releases is to mitigate climate warming by lowering anthropogenic greenhouse gas emissions."

Gustafsson, Martens and their colleagues are now again in the Arctic Ocean as part of the International Siberian Shelf Study (ISSS-2020) onboard the Russian research vessel Akademik Keldysh. The expedition left the port of Arkhangelsk on September 26 and is currently in the East Siberian Sea, seeking more answers to how changing climate may trigger release of carbon, including greenhouse gases, from Arctic permafrost systems, including coastal erosion and permafrost below the sea bottom preserved from the past ice age.
-end-
Publication:

J. Martens, B. Wild, F. Muschitiello, M. O'Regan, M. Jakobsson, I. Semiletov, O. V. Dudarev, &. Gustafsson, Remobilization of dormant carbon from Siberian-Arctic permafrost during three past warming events. Sci. Adv. 6, eabb6546 (2020).

For further information, please contact:

Jannik Martens, Doctoral candidate at Stockholm University, jannik.martens@aces.su.se

Örjan Gustafsson, Professor in Biogeochemistry at Stockholm University, ojan.gustafsson@aces.su.se

Please note! Changes in e-mail addresses due to the ongoing ISSS-2020 expedition.

With regard to the ISSS-2020 Arctic Ocean expedition (Sep 23 - Nov 06), Jannik Martens will coordinate any inquiries regarding this publication via the temporary e-mail address jannikmartens@myiridium.net

Please direct all e-mail correspondence for the time during the expedition to this address and also keep the primary SU address jannik.martens@aces.su.se in CC.

Please know that file attachments sent to jannikmartens@myiridium.net should not be larger than 300 kb and expect that file attachments sent from this address cannot be larger than 100 kb.

Short interviews via satellite phone with either Jannik Martens or Örjan Gustafsson are possible upon request or audio commentary may be recorded and transmitted electronically via e-mail.

More information about the ISSS-2020 expedition may be found here: https://www.aces.su.se/research/projects/the-isss-2020-arctic-ocean-expedition/

Stockholm University

Related Greenhouse Gases Articles:

Mitigation of greenhouse gases in dairy cattle through genetic selection
Researchers in Spain propose mitigating methane production by dairy cattle through breeding.
Researchers control cattle microbiomes to reduce methane and greenhouse gases
''Now that we know we can influence the microbiome development, we can use this knowledge to modulate microbiome composition to lower the environmental impact of methane from cows by guiding them to our desired outcomes,'' Ben-Gurion University of the Negev Prof Mizrahi says.
A new look into the sources and impacts of greenhouse gases in China
Special issue of Advances in Atmospheric Sciences reveals new findings on China's GHG emissions and documents changes in local and regional environments.
New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.
Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.
Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.
White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.
Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.
What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.
Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.
More Greenhouse Gases News and Greenhouse Gases Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.