Nav: Home

Those funky cheese smells allow microbes to 'talk' to and feed each other

October 16, 2020

MEDFORD/SOMERVILLE, Mass. (October 16, 2020)-- Researchers at Tufts University have found that those distinctly funky smells from cheese are one way that fungi communicate with bacteria, and what they are saying has a lot to do with the delicious variety of flavors that cheese has to offer. The research team found that common bacteria essential to ripening cheese can sense and respond to compounds produced by fungi in the rind and released into the air, enhancing the growth of some species of bacteria over others. The composition of bacteria, yeast and fungi that make up the cheese microbiome is critical to flavor and quality of the cheese, so figuring out how that can be controlled or modified adds science to the art of cheese making.

The discovery, published in Environmental Microbiology, also provides a model for the understanding and modification of other economically and clinically important microbiomes, such as in soil or the gastrointestinal tract.

"Humans have appreciated the diverse aromas of cheeses for hundreds of years, but how these aromas impact the biology of the cheese microbiome had not been studied," said Benjamin Wolfe, professor of biology in the School of Arts and Science at Tufts University and corresponding author of the study. "Our latest findings show that cheese microbes can use these aromas to dramatically change their biology, and the findings' importance extends beyond cheese making to other fields as well."

Many microbes produce airborne chemical compounds called volatile organic compounds, or VOCs, as they interact with their environment. A widely recognized microbial VOC is geosmin, which is emitted by soil microbes and can often be smelled after a heavy rain in forests. As bacteria and fungi grow on ripening cheeses, they secrete enzymes that break down amino acids to produce acids, alcohols, aldehydes, amines, and various sulfur compounds, while other enzymes break down fatty acids to produce esters, methyl ketones, and secondary alcohols. All of those biological products contribute to the flavor and aroma of cheese and they are the reason why Camembert, Blue cheese and Limburger have their signature smells.

The Tufts researchers found that VOCs don't just contribute to the sensory experience of cheese, but also provide a way for fungi to communicate with and "feed" bacteria in the cheese microbiome. By pairing 16 different common cheese bacteria with 5 common cheese rind fungi, the researchers found that the fungi caused responses in the bacteria ranging from strong stimulation to strong inhibition. One bacteria species, Vibrio casei, responded by growing rapidly in the presence of VOCs emitted by all five of the fungi. Other bacteria, such as Psychrobacter, only grew in response to one of the fungi (Galactomyces), and two common cheese bacteria decreased significantly in number when exposed to VOCs produced by Galactomyces.

The researchers found that the VOCs altered the expression of many genes in the bacteria, including genes that affect the way they metabolize nutrients. One metabolic mechanism that was enhanced, called the glyoxylate shunt, allows the bacteria to utilize more simple compounds as "food" when more complex sources such as glucose are unavailable. In effect, they enabled the bacteria to better "eat" some of the VOCs and use them as sources for energy and growth.

"The bacteria are able to actually eat what we perceive as smells," said Casey Cosetta, post-doctoral scholar in the department of biology at Tufts University and first author of the study. "That's important because the cheese itself provides little in the way of easily metabolized sugars such as glucose. With VOCs, the fungi are really providing a useful assist to the bacteria to help them thrive."

There are direct implications of this research for cheese producers around the world. When you walk into a cheese cave there are many VOCs released into the air as the cheeses age. These VOCs may impact how neighboring cheeses develop by promoting or inhibiting the growth of specific microbes, or by changing how the bacteria produce other biological products that add to the flavor. A better understanding of this process could enable cheese producers to manipulate the VOC environment to improve the quality and variety of flavors.

The implications of the research can even extend much further. "Now that we know that airborne chemicals can control the composition of microbiomes, we can start to think about how to control the composition of other microbiomes, for example in agriculture to improve soil quality and crop production and in medicine to help manage diseases affected by the hundreds of species of bacteria in the body," said Wolfe.
Other authors of this study include Nicole Kfoury, former postdoctoral scholar at Tufts and currently applications scientist at Gerstel, Inc., and Albert Robbat Jr., associate professor of chemistry at Tufts.

This research was supported by a grant from the National Science Foundation (#1715553).

Cosetta, C.M., Kfoury, N., Robbat, A., and Wolfe, B.E. "Fungal volatiles mediate cheese rind microbiome assembly" Environmental Microbiology, 9 September 2020; DOI: 10.1111/1462-2920.15223

About Tufts University

Tufts University, located on campuses in Boston, Medford/Somerville and Grafton, Massachusetts, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Tufts University

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.