Nav: Home

Deep sea coral time machines reveal ancient CO2 burps

October 16, 2020

The fossilised remains of ancient deep-sea corals may act as time machines providing new insights into the effect the ocean has on rising CO2 levels, according to new research carried out by the Universities of Bristol, St Andrews and Nanjing and published today [16 October] in Science Advances.

Rising CO2 levels helped end the last ice age, but the cause of this CO2 rise has puzzled scientists for decades. Using geochemical fingerprinting of fossil corals, an international team of scientists has found new evidence that this CO2 rise was linked to extremely rapid changes in ocean circulation around Antarctica.

The team collected fossil remains of deep-sea corals that lived thousands of metres beneath the waves. By studying the radioactive decay of the tiny amounts of uranium found in these skeletons, they identified corals that grew at the end of the ice age around 15,000 years ago.

Further geochemical fingerprinting of these specimens - including measurements of radiocarbon - allowed the team to reconstruct changes in ocean circulation and compare them to changes in global climate at an unprecedented time resolution.

Professor Laura Robinson, Professor of Geochemistry at Bristol's School of Earth Sciences who led the research team, said: "The data show that deep ocean circulation can change surprisingly rapidly, and that this can rapidly release CO2 to the atmosphere."

Dr James Rae at St Andrew's School of Earth and Environmental Sciences, added: "The corals act as a time machine, allowing us to see changes in ocean circulation that happened thousands of years ago.

"They show that the ocean round Antarctica can suddenly switch its circulation to deliver burps of CO2 to the atmosphere."

Scientists have suspected that the Southern Ocean played an important role in ending the last ice age and the team's findings add weight to this idea.

Dr Tao Li of Nanjing University, lead author of the new study, said: "There is no doubt that Southern Ocean processes must have played a critical role in these rapid climate shifts and the fossil corals provide the only possible way to examine Southern Ocean processes on these timescales."

In another study published in Nature Geoscience this week the same team ruled out recent speculation that the global increase in CO2 at the end of the ice age may have been related to release of geological carbon from deep sea sediments.

Andrea Burke at St Andrew's School of Earth and Environmental Sciences, added: "There have been some suggestions that reservoirs of carbon deep in marine mud might bubble up and add CO2 to the ocean and the atmosphere, but we found no evidence of this in our coral samples."

Dr Tianyu Chen of Nanjing University said: "Our robust reconstructions of radiocarbon at intermediate depths yields powerful constraints on mixing between the deep and upper ocean, which is important for modelling changes in circulation and carbon cycle during the last ice age termination.

Dr James Rae added: "Although the rise in CO2 at the end of the ice age was dramatic in geological terms, the recent rise in CO2 due to human activity is much bigger and faster. What the climate system will do in response is pretty scary."
-end-
Paper

'Rapid shifts in circulation and biogeochemistry of the Southern Ocean during deglacial carbon cycle events' by L Robinson et al in Science Advances. https://advances.sciencemag.org/content/6/42/eabb3807

'Persistently well-ventilated intermediate-depth ocean through the last deglaciation' by L Robinson et al in Nature Geoscience

https://www.nature.com/articles/s41561-020-0638-6

University of Bristol

Related Ice Age Articles:

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.
Ice Age manatees may have called Texas home
Manatees don't live year-round in Texas, but these gentle sea cows are known to occasionally visit, swimming in for a 'summer vacation' and returning to warmer waters for the winter.
Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.
How cold was the ice age? Researchers now know
A University of Arizona-led team has nailed down the temperature of the last ice age -- the Last Glacial Maximum of 20,000 years ago - to about 46 degrees Fahrenheit.
What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.
New study results consistent with dog domestication during ice age
Analysis of Paleolithic-era teeth from a 28,500-year-old fossil site in the Czech Republic provides supporting evidence for two groups of canids -- one dog-like and the other wolf-like - with differing diets, which is consistent with the early domestication of dogs.
Did an extraterrestrial impact trigger the extinction of ice-age animals?
Based on research at White Pond near Elgin, South Carolina, University of South Carolina archaeologist Christopher Moore and 16 colleagues present new evidence of a controversial theory that suggests an extraterrestrial body crashing to Earth almost 13,000 years ago caused the extinction of many large animals and a probable population decline in early humans.
Dust in ice cores leads to new knowledge on the advancement of the ice before the ice age
Working with the ice core ReCap, drilled close to the coast in East Greenland, postdoc Marius Simonsen wondered why the dust particles from the interglacial period -- the warmer period of time between the ice ages -- were several times bigger than the dust particles from the ice age.
Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.
What triggered the 100,000-year Ice Age cycle?
A slowing of ocean circulation in the waters surrounding Antarctica drastically altered the strength and more than doubled the length of global ice ages following the mid-Pleistocene transition, a new study finds.
More Ice Age News and Ice Age Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.