Surprising gap in auroral oval surprises scientists

October 16, 1998

A small gap in the aurora borealis has scientists wondering what's really happening deeper in space.

"Right here, at local midnight, you have this gap where things should be happening," explained Dr. James Spann of NASA's Marshall Space Flight Center. "Something special may be happening back in the magnetosphere. The truth is, we don't know."

The gap is described this week in "A new auroral feature: The nightside gap," the cover story of the Oct. 15 issue of Geophysical Research Letters. The lead author is Damien Chua, a graduate student at the University of Washington, who discovered the gap using the Ultraviolet Imager aboard the Polar spacecraft.

"This gap has been alluded to in past articles, but it's not been fully described," explained Spann, a UVI co-investigator and a co-author on the paper.

The UVI is a camera equipped with a unique series of filters that allow it to view the Earth's aurora borealis - the Northern Lights - even during daylight. It is aboard the Polar spacecraft which, as its name implies, orbits over the North Pole so scientists can investigate conditions where the Earth's magnetic field lines are vertical and expose the upper atmosphere directly to space.

The aurora itself is one of the effects caused by that exposure as electrons zip back and forth along the magnetic field lines and - if energized high enough - slam into the atmosphere to create a light show.

Spann says that scientists believe the aurora reflects what happens in the magnetosphere, an immense region of charged particles trapped by Earth's magnetic field. The solar wind squeezes the magnetosphere close to the Earth on the dayside, and drags it out to a million or more kilometers on the night side. The wind also helps energize the magnetotail so it sends stored particles zipping back to Earth.

Usually the auroral arc is strongest around the night side during geomagnetic substorms. The surprise that Chua found is that about 7 percent of the time a small gap appears between 10 p.m. and midnight, local time. A total of 22 gaps were found in auroral ovals between December 1966 and February 1997.

"Typically they occur 10 to 20 minutes before the onset of the storm, but often they occur right after onset," Spann explained. The gap may appear as a full break in the auroral arc, or it may be just a notch as if whatever effect causes it is not quite strong enough to complete the break.

There does not appear to be much correlation with solar wind pressure," Spann continued. "It does appear to have some correlation with the plane of the interplanetary magnetic field [IMF] along the plane of the Earth's orbit, but we're not ready to conclude that."

"Changes in the IMF orientation may be giving rise to perturbations in the currents aligned with the earth's magnetic field that are directly tied to auroral activity," Chua commented. "This effect has the most observational evidence so far.

"We think that this feature may shed some light on how the auroral ionosphere is coupled to the magnetosphere, but we're still trying to make heads or tails out of what this all means."

Or, the answer may lie in a region just 5,000 km high where particles get their strongest acceleration towards the Earth.

"Perhaps that acceleration region is perturbed in some fashion," Spann said. "Perhaps it's depleted in particles or energy.
-end-


NASA/Marshall Space Flight Center--Space Sciences Laboratory

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.