Hopkins researchers discover how nitric oxide prevents blood vessel inflammation

October 17, 2003

Johns Hopkins scientists investigating nitric oxide (NO) - the molecular messenger that contributes to body functions as wide-ranging as cell death, new blood vessel growth and erections - have figured out how it can block blood vessel inflammation and prevent clotting, a process that has long stumped biologists.

Reporting in the Oct. 17 issue of the journal Cell, cardiologist Charles J. Lowenstein, M.D., and his team observed that NO has the power to inhibit endothelial cells lining blood vessels from releasing inflammatory substances.

Normally, these cells activate a process called exocytosis (a release of substances) to start inflammation, releasing packets of molecules into the bloodstream that, like tiny hand grenades, explode and discharge compounds that trigger inflammation. NO can move in and target a protein within the endothelial cells, N-ethylmaleimide-Sensitive Factor (NSF), that stops the process from happening by blocking the ability of NSF to push out the molecules.

"Nitric oxide may regulate exocytosis this way in a variety of diseases," says Lowenstein, an associate professor of medicine at Hopkins. "For example, nitric oxide blocks exocytosis from platelets, preventing blood clots; exocytosis from neurons, decreasing neurotoxicity in strokes; and exocystosis from lymphocytes, reducing autoimmune damage."

The Hopkins scientists discovered NO's protective role in both cells and mice. They added NO to human endothelial cells in culture and discovered that it blocked the release of inflammatory compounds. The researchers then found that platelets stuck to blood vessels more often in mice that could not make NO, compared to normal mice.

The findings already have led Lowenstein's team to develop a novel drug to block exocytosis, thereby acting as an anti-clotting agent. It is a peptide that blocks exocytosis by a mechanism similar to that of nitric oxide. In laboratory tests in mice, the drug prevented tiny, disk-shaped platelets from sticking and causing blood clots. The therapy has potential to limit the amount of heart muscle damage following heart attack, or to treat people with blood-clotting disorders, Lowenstein says, but clinical trials are still years away.

The study was funded by the National Institutes of Health, the American Heart Association, Hopkins' Ciccarone Center for the Prevention of Heart Disease, and the John and Cora H. Davis Foundation.

Coauthors were Kenji Matsushita, Craig N. Morrell, Shui-Xiang Yang, Munekazu Yamakuchi, Clare Bao, Makoto Hara, Richard A. Quick, Wangsen Cao, Brian O'Rourke and Jonathan Pevsner of Hopkins; Beatrice Cambien and Denisa D. Wagner of Harvard Medical School, and John M. Lowenstein of Brandeis University.
-end-
Matsushita, K. et al, "Nitric Oxide Regulates Exocytosis by S-Nitrosylation of N-ethylmaleimide-Sensitive Factor," Cell, Oct. 17, 2003, Vol. 115, pages 1-20.

Links:

Johns Hopkins' Division of Cardiology
http://www.hopkinsmedicine.org/cardiology/index.htm

Cell online
http://www.cell.com/Johns Hopkins Medical Institutions' news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org , and from the Office of Communications and Public Affairs' direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

On a POST-EMBARGOED basis find them at http://www.hopkinsmedicine.org

Johns Hopkins Medicine

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.