Stimulating the brain makes the fingers more sensitive

October 17, 2005

Repetitive transcranial magnetic stimulation (rTMS) has emerged as an intriguing technique for exploring brain function, and a promising, though still unproven, form of therapy. This week, in the open-access journal PLoS Biology, Hubert Dinse and colleagues show that a short course of rTMS can increase finger sensitivity for up to two hours after treatment ends, and that this change corresponds to an increase in the size of the brain map representing the finger.

rTMS is applied with an electromagnetic coil in the shape of a figure-eight, placed on the scalp directly over the targeted portion of the brain. Short bursts of a strong magnetic pulse stimulate electrical currents within. Sensory input from each region of the body is represented on the surface of the brain, and the location of any region--in this case, the right index finger--can be mapped to allow precise targeting of the rTMS. The authors adjusted the strength of the magnetic field to just below that which triggered a sensory response in the finger, and then applied intermittent pulses of stimulation over the course of about ten minutes.

They tested the sensitivity of the index finger by determining how far apart two simultaneously applied pinpricks needed to be for the subject to distinguish them as separate stimuli. rTMS increased this two-point discrimination by about 15% immediately after stimulation, an effect that gradually diminished but still remained significant over the course of the next two hours. The effect was fairly specific for the right index finger: there was no effect on the left index finger, which is represented in the opposite hemisphere, and only a small effect on the right ring finger, which is represented several millimeters away from the index finger in the same hemisphere. When stimulation was applied over the area representing the lower leg, the index finger did not become more sensitive.

The authors used functional magnetic resonance imaging (fMRI) to see how the brain changed in response to the stimulation. They found that the region representing the index finger got larger, and that the degree of increase in any one subject corresponded to the degree of increased sensitivity in that same subject. As the sensory effect faded, so too did the fMRI changes. Thus, the cortex itself undergoes changes as a result of rTMS.
Citation: Tegenthoff M, Ragert P, Pleger B, Schwenkreis P, Forster AF, et al. (2005) Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol 3(11): e362.

CONTACT: Hubert Dinse
Bochum, Germany 44780


All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.


Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to