Toward world's smallest radio: nano-sized detector turns radio waves into music

October 17, 2007

Researchers in California today (Oct. 17) report development of the world's first working radio system that receives radio waves wirelessly and converts them to sound signals through a nano-sized detector made of carbon nanotubes. The "carbon nanotube radio" device is thousands of times smaller than the diameter of a human hair. The development marks an important step in the evolution of nano-electronics and could lead to the production of the world's smallest radio, the scientists say. Their findings appeared online today and are scheduled for publication in the Nov. 14 print edition of ACS' Nano Letters, a monthly journal.

Peter Burke and Chris Rutherglen developed a carbon nanotube "demodulator" that is capable of translating AM radio waves into sound. In a laboratory demonstration, the researchers incorporated the detector into a complete radio system and used it to successfully transmit classical music wirelessly from an iPod to a speaker several feet away from the music player.

Although other researchers have developed nano-sized radio wave detectors in the past, the current study marks the first time that a nano-sized detector has been demonstrated in an actual working radio system, the scientists say. The study demonstrates the feasibility of making other radio components at the nanoscale in the future and may eventually lead to a "truly integrated nanoscale wireless communications system," they say. Such a device could have numerous industrial, commercial, medical and other applications.
-end-
The American Chemical Society -- the world's largest scientific society -- is a nonprofit organization chartered by the U.S. Congress and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

*The research in this press release is from a copyrighted publication, and stories must credit the journal by name or the American Chemical Society.

Video caption and credit:
A graduate student of the University of California-Irvine demonstrates world's first working version of a carbon nanotube radio system:
http://web.1.c2.audiovideoweb.com/1c2web3536/NanotubeRadio5m.wmv
(Windows Media Video format)
Copyright, American Chemical Society

American Chemical Society

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.