Nav: Home

Finding ideal materials for carbon capture

October 17, 2016

In recent years, a class of highly absorbent, nanoporous materials called metal-organic frameworks (MOFs) have emerged as a promising material for carbon capture in power plants. But finding the optimal MOF to do the best job is another story.

"People are really excited about these materials because we can make a huge variety and really tune them," said Northwestern University's Randall Q. Snurr. "But there's a flip side to that. If you have an application in mind, there are thousands of existing MOFs and millions of potential MOFs you could make. How do you find the best one for a given application?"

Snurr, who is the John G. Searle Professor of Chemical and Biological Engineering, and his group have discovered a way to rapidly identify top candidates for carbon capture -- using just 1 percent of the computational effort that was previously required. By applying a genetic algorithm, they rapidly searched through a database of 55,000 MOFs.

"In the past, we had to evaluate all 55,000 candidates one at a time," Snurr said. "We just marched through them and calculated all of their properties. This genetic algorithm allows you to avoid that."

One of the identified top candidates, a variant of NOTT-101, has a higher capacity for carbon dioxide (CO2) than any MOF reported in scientific literature for the relevant conditions. This information could lead to designs for newly commissioned, cleaner power plants.

"The percentage of carbon dioxide that the MOF can absorb depends on the process," Snurr said. "The Department of Energy target is to remove 90 percent of carbon dioxide from a power plant; it's likely that a process using this material could meet that target."

Supported by the US Department of Energy, the research appeared online today in the journal Science Advances. Yongchul G. Chung and Diego A. Gomez-Gualdron, former postdoctoral fellows in Snurr's laboratory, were the paper's co-first authors. Northwestern chemistry professors J. Fraser Stoddart, Joseph Hupp, and Omar Farha contributed to the work as well as Fengqi You, former professor of chemical and biological engineering at Northwestern.

With their nanoscopic pores and incredibly high surface areas, MOFs are excellent materials for gas storage. MOFs' vast internal surface areas allow them to hold remarkably high volumes of gas. The volume of some MOF crystals might be the size of a grain of salt, for example, but the internal surface area, if unfolded, could cover an entire football field.

Snurr's previous work has explored how to use MOFs to capture carbon from existing power plants during the post-combustion process. About 10 to 15 percent of power plant exhaust is CO2; the rest is mainly nitrogen and water vapor. Snurr and Hupp designed a MOF that can sort these gases to capture CO2 before it enters the atmosphere.

Recently, Snurr recalled that the method is a lot easier after a little chemical processing. Chemically processing the fuel before it enters the power plant can turn it into CO2 and hydrogen. After the MOF captures the CO2, the hydrogen is burned and the only byproduct is water. This extra chemical processing step would need to be built into new power plants as a pre-combustion process.

"In places like China, where they are still building a lot of power plants," Snurr said, "this would make a lot of sense."

An optimization technique that mimics natural selection, the genetic algorithm takes a random population of candidate solutions and evolves them toward better solutions through mutation, crossover, and selection. Snurr said this technique has been applied to material screening in the past but not in a search for top candidates for the pre-combustion process, which he describes as a "new challenge."

To tackle carbon capture in pre-combustion, the genetic algorithm pinpointed NOTT-101 as a top candidate. (The material is named after Nottingham, the place where the MOF was first discovered.) Hupp and Farha created the NOTT-101 variant and tested it in the laboratory. Out of all of the MOFs that have been evaluated for pre-combustion, this material had the highest capacity for capturing carbon and good selectivity for grabbing CO2 to sort it from hydrogen.

"Initially, I wasn't sure how well this algorithm would work," Snurr said. "But using just 1 percent of the usual computational effort is a significant improvement in speed. It's very exciting."
-end-


Northwestern University

Related Algorithm Articles:

Scientists use algorithm to peer through opaque brains
A new algorithm helps scientists record the activity of individual neurons within a volume of brain tissue.
Algorithm generates origami folding patterns for any shape
A new algorithm generates practical paper-folding patterns to produce any 3-D structure.
New algorithm tracks neurons in bendy brain of freely crawling worm
Scientists at Princeton University have developed a new algorithm to track neurons in the brain of the worm Caenorhabditis elegans while it crawls.
Does my algorithm work? There's no shortcut for community detection
Community detection is an important tool for scientists studying networks, but a new paper published in Science Advances calls into question the common practice of using metadata for ground truth validation.
'Cyclops' algorithm spots daily rhythms in cells
Humans, like virtually all other complex organisms on Earth, have adapted to their planet's 24-hour cycle of sunlight and darkness.
More Algorithm News and Algorithm Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...