Nav: Home

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

JUPITER, FL - Oct. 17, 2016 - In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, information that could accelerate the development of treatments.

The study, led by TSRI Associate Professors Hyeryun Choe and Damon Page, was published recently in the journal Nature Scientific Reports.

In the new study, the scientists observed the virus's effects in animal models at two different points -- during early postnatal development, when the brain is growing rapidly, and at weaning, when the brain has largely reached adult size.

"In early postnatal Zika-infected models some brain areas and cell types showed particularly large increases in apoptosis [programmed cell death] that we did not observe in older animals," Choe said.

The findings expand the current knowledge of cell types vulnerable to the effects of Zika infection to include not only neuron progenitor cells, but also post-mitotic neurons that have finished dividing but are still are undergoing rapid increases in cell size. These results are consistent with the theory that periods of rapid brain growth are especially susceptible to the damaging neurodevelopmental effects of Zika infection.

"An interesting aspect of the study is the comparison of the two time points," Page noted. "There is neural cell death at both times, but it's much greater when the brain is growing rapidly. We can take advantage of this strong effect to test potential treatments and to understand whether some genetic backgrounds may confer enhanced susceptibility or resilience to Zika-induced microcephaly."

Zika virus was first isolated in rhesus macaque monkeys in Uganda in 1947. Transmitted by mosquito, it is related to several other human pathogens, including West Nile virus, dengue, Japanese encephalitis virus and yellow fever. As widely reported, the 2015 Zika epidemic in Brazil coincided with a dramatic increase in cases of microcephalic newborns.

"Our findings establish a valuable model to investigate the mechanisms that underlie the horrific birth defects associated with Zika infection," said TSRI Graduate Student Wen-Chin Huang, the first author of the study.

The team is continuing to build on this study to better understand and combat the virus.
-end-
In addition to Choe, Page and Huang, other authors of the study, "Zika Virus Infection During the Period Of Maximal Brain Growth Causes Microcephaly and Corticospinal Neuron Apoptosis in Wild Type Mice," include Rachy Abraham and Byoung-Shik Shim of TSRI.

The study was supported by the National Institutes of Health (grant R01 AI110692) and by Ms. Nancy Lurie Marks.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists -- including two Nobel laureates and 20 members of the National Academy of Science, Engineering or Medicine -- work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see http://www.scripps.edu.

Scripps Research Institute

Related Brain Articles:

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...