Nav: Home

Tiny crystals and nanowires could join forces to split water

October 17, 2016

BUFFALO, N.Y. -- Scientists are pursuing a tiny solution for harnessing one of the world's most abundant sources of clean energy: Water.

By marrying teeny crystals called quantum dots to miniature wires, the researchers are developing new materials that show promise for splitting water into oxygen and hydrogen fuel, which could be used to power cars, buses, boats and other modes of transportation.

"Hydrogen is seen as an important source of green energy because it generates water as the only byproduct when it's burned," says University at Buffalo chemist David Watson, PhD, one of the project's lead researchers. "The hybrid materials we're developing have the potential to support the cheap and efficient production of hydrogen gas."

Watson, professor and chair of chemistry in the UB College of Arts and Sciences, has received a $550,000 grant from the National Science Foundation (NSF) to pursue the work. UB physics professor Peihong Zhang, PhD, is also a partner on the research, which is part of a larger $1.4 million NSF-funded project that teams UB with Texas A&M University, Binghamton University and Rensselaer Polytechnic Institute to develop the new catalysts for splitting water.

The project is funded through the NSF's Designing Materials to Engineer and Revolutionize our Future program, which supports the White House's Materials Genome Initiative for Global Competitiveness by accelerating the discovery of new materials.

A reaction powered by the sun

The materials under development are catalysts designed to harvest sunlight to drive the chemical reaction that divides water into oxygen and hydrogen.

They are formed from miniscule wires of vanadium oxide that are combined with various metal ions, then glazed with a coating of semiconductor quantum dots.

When they're exposed to the sun, these hybrid materials generate two critical ingredients for splitting water: a free-floating electron and what chemists call an electronic hole (the absence of an electron where there would normally be one). Both the electron and the hole are used in the multi-step chemical reaction that converts water into oxygen and hydrogen gas.

So far, the research team successfully created materials that efficiently produce and separate both a free electron and a hole, though the scientists have yet to demonstrate that their hole can be used successfully in the water-splitting reaction.

From an industry perspective, the nanowire-quantum dot approach has benefits. Both the nanowires and quantum dots can be easily produced in large quantities from materials that are abundant in the crust of the earth, and both are "tunable," Watson says. As he explains, changing the size of the quantum dots alters their electronic properties, as does combining the vanadium oxide nanowires with new materials. This makes it possible to tweak both components to maximize their efficiency at leveraging sunlight to split water.

"It's a very flexible approach -- a versatile platform for converting sunlight and water into fuel," Watson says.

The scientists will use the new NSF funding to support an exploration of the best combinations of quantum dots and nanowires. In concert with synthesizing new materials, they will computationally predict which structures will have the best electronic properties.

"We are trying to put together some fairly complex machinery to mimic photosynthesis performed by plants, which use sunlight to split water and make energy. The machinery will be built from these nanowire and quantum dot blocks, using them almost as Legos," says Sarbajit Banerjee, PhD, professor of chemistry at Texas A&M University. "Calculations performed on supercomputers will guide us on how to rapidly put these blocks together."

The research was seeded by a Scialog grant from the Research Corporation for Science Advancement, an Arizona-based foundation devoted to the advancement of science.

University at Buffalo

Related Hydrogen Articles:

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.
World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
The faint glow of cosmic hydrogen
A study published recently in Nature magazine, in which Ana Monreal-Ibero, a researcher at the Instituto de Astrofísica de Canarias (IAC) is a participant, reveals the presence of a hitherto undetected component of the universe: large masses of gas surrounding distant galaxies.
New technology improves hydrogen manufacturing
INL researchers demonstrated high-performance electrochemical hydrogen production at a lower temperature than had been possible before.
Hydrogen transfer: One thing after the other
Hydride transfer is an important reaction for chemistry (e.g., fuel cells), as well as biology (e.g., respiratory chain and photosynthesis).
More Hydrogen News and Hydrogen Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab