Nav: Home

Unprecedented look at electron brings us closer to understanding the universe

October 17, 2018

EVANSTON, Ill. -- The scientific community can relax. The electron is still round.

At least for now.

In a new study, researchers at Northwestern, Harvard and Yale universities examined the shape of an electron's charge with unprecedented precision to confirm that it is perfectly spherical. A slightly squashed charge could have indicated unknown, hard-to-detect heavy particles in the electron's presence, a discovery that could have upended the global physics community.

"If we had discovered that the shape wasn't round, that would be the biggest headline in physics for the past several decades," said Gerald Gabrielse, who led the research at Northwestern. "But our finding is still just as scientifically significant because it strengthens the Standard Model of particle physics and excludes alternative models."

The study will be published Oct. 18 in the journal Nature. In addition to Gabrielse, the research was led by John Doyle, the Henry B. Silsbee Professor of Physics at Harvard, and David DeMille, professor of physics at Yale. The trio leads the National Science Foundation (NSF)-funded Advanced Cold Molecule Electron (ACME) Electric Dipole Moment Search.

The sub-standard Standard Model

A longstanding theory, the Standard Model of particle physics describes most of the fundamental forces and particles in the universe. The model is a mathematical picture of reality, and no laboratory experiments yet performed have contradicted it.

This lack of contradiction has been puzzling physicists for decades.

"The Standard Model as it stands cannot possibly be right because it cannot predict why the universe exists," said Gabrielse, the Board of Trustees Professor of Physics at Northwestern. "That's a pretty big loophole."

Gabrielse and his ACME colleagues have spent their careers trying to close this loophole by examining the Standard Model's predictions and then trying to confirm them through table-top experiments in the lab.

Attempting to "fix" the Standard Model, many alternative models predict that an electron's seemingly uniform sphere is actually asymmetrically squished. One such model, called the Supersymmetric Model, posits that unknown, heavy subatomic particles influence the electron to alter its perfectly spherical shape -- an unproven phenomenon called the "electric dipole moment." These undiscovered, heavier particles could be responsible for some of the universe's most glaring mysteries and could possibly explain why the universe is made from matter instead of antimatter.

"Almost all of the alternative models say the electron charge may well be squished, but we just haven't looked sensitively enough," said Gabrielse, the founding director of Northwestern's new Center for Fundamental Physics. "That's why we decided to look there with a higher precision than ever realized before."

Squashing the alternative theories

The ACME team probed this question by firing a beam of cold thorium-oxide molecules into a chamber the size of a large desk. Researchers then studied the light emitted from the molecules. Twisting light would indicate an electric dipole moment. When the light did not twist, the research team concluded that the electron's shape was, in fact, round, confirming the Standard Model's prediction. No evidence of an electric dipole moment means no evidence of those hypothetical heavier particles. If these particles do exist at all, their properties differ from those predicted by theorists.

"Our result tells the scientific community that we need to seriously rethink some of the alternative theories," DeMille said.

In 2014, the ACME team performed the same measurement with a simpler apparatus. By using improved laser methods and different laser frequencies, the current experiment was an order of magnitude more sensitive than its predecessor.

"If an electron were the size of Earth, we could detect if the Earth's center was off by a distance a million times smaller than a human hair," Gabrielse explained. "That's how sensitive our apparatus is."

Gabrielse, DeMille, Doyle and their teams plan to keep tuning their instrument to make more and more precise measurements. Until researchers find evidence to the contrary, the electron's round shape -- and the universe's mysteries -- will remain.

"We know the Standard Model is wrong, but we can't seem to find where it's wrong. It's like a huge mystery novel," Gabrielse said. "We should be very careful about making assumptions that we're getting closer to solving the mystery, but I do have considerable hope that we're getting closer at this level of precision."
-end-


Northwestern University

Related Physics Articles:

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.
Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.
Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.
Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.
Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
More Physics News and Physics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.