Efficient synthesis of ginkgo compound could lead to new drugs, 'green' insecticides

October 17, 2019

LA JOLLA, CA - Chemists at Scripps Research have invented an efficient method for making a synthetic version of the plant compound bilobalide, which is naturally produced by gingko trees. It's a significant feat because bilobalide--and closely related compounds--hold potential commercial value as medicines and "green" insecticides.

Ginkgo trees produce the compound to repel insect pests, but it is effectively non-toxic to humans. The method, published in Nature, allows chemists to make and study bilobalide and related compounds relatively easily and much more affordably than previously possible.

"This process demonstrates how inventing the right new chemical reactions allows quick access to complex natural compounds," says Ryan Shenvi, PhD, professor in the Department of Chemistry at Scripps Research. "Now we can access bilobalide and the chemical space around it, much of which might have even better properties."

The ginkgo tree (Ginkgo biloba) is considered a living fossil. Closely related species lived on Earth 270 million years ago, before dinosaurs, and managed to survive subsequent global cataclysms that extinguished the dinosaurs as well as most other kinds of plant and animal.

Unsurprisingly, given that legacy, individual ginkgo trees today are unusually hardy and long-lived; some specimens are said to be thousands of years old. Traditional Chinese medicine includes the use of ginkgo extracts for a variety of ailments, and even the leaves are said to have been used in ancient times as bookmarks to protect against paper-eating insects like silverfish.

A likely factor in G. biloba's longevity is the set of insecticidal compounds found in its leaves and nuts. These include ginkgolide compounds, which can cause dangerous bleeding in humans who ingest them at high enough doses, but also the less well known bilobalide, which has powerful effects on insects but appears to be essentially non-toxic to people. Bilobalide also breaks down quickly in the environment, adding to its attributes for a "green" insecticide.

However, bilobalide has a complex carbon-skeleton structure with eight oxygen atoms that makes it inherently tricky to synthesize. Previously published methods were lengthy, in part because of the difficulty of getting all those oxygen atoms into the proper positions.

"We tried a different approach," Shenvi says. "Rather than chiseling away at the structure by putting oxygen atoms in one-by-one, we started with large, oxygen-containing fragments, and then pieced them together, like assembling Ikea furniture."

The new synthesis method, developed principally by graduate students Meghan Baker and Robert Demoret, as well as postdoc Masaki Ohtawa, culminated with a procedure in which the bowl-like molecular architecture was opened and a final oxygen atom was placed at a precise location inside it.

"Figuring out how to do the last part was a monumental effort," Shenvi says.

The synthesis, on the whole, involves far less time and effort compared to prior methods, and its development means that chemists now have a practical organic-synthesis method for making not only bilobalide but also derivative compounds, in order to investigate their properties as insecticides or even as potential pharmaceuticals. Researchers have reported in previous studies that bilobalide reverses cognitive deficits in an animal model of Down syndrome, and that it protects dopamine neurons in a model of Parkinson's disease.

"We were first interested in bilobalide because of its potential relevance for human neuroscience," Shenvi says. "However, since word has spread about the new synthesis, we've had the strongest expression of interest from the agrochemical industry, because of bilobalide's good characteristics as an insecticide and its safety profile."

Shenvi and his colleagues plan to use their new method to make bilobalide analogs and explore their properties.
Authors of the study, "Concise asymmetric synthesis of (?)-bilobalide," were Meghan Baker, Robert Demoret, and Ryan Shenvi, of Scripps Research, and Masaki Ohtawa of Kitasato University.

Support for the research was provided by the National Institutes of Health (R35 GM122606), the Uehara Memorial Foundation, Eli Lilly, Novartis, Bristol-Myers Squibb, Amgen, Boehringer-Ingelheim, the Sloan Foundation and the Baxter Foundation.

Scripps Research Institute

Related Insecticides Articles from Brightsurf:

Two pesticides approved for use in US harmful to bees
A previously banned insecticide, which was approved for agricultural use last year in the United States, is harmful for bees and other beneficial insects that are crucial for agriculture, and a second pesticide in widespread use also harms these insects.

Insect Armageddon: low doses of the insecticide, Imidacloprid, cause blindness in insects
Joint research provides important evidence on the role of insecticides on the longevity of insect population.

Researchers warn of food-web threats from common insecticides
In an opinion in the journal Proceedings of the National Academy of Sciences, researchers from North Carolina State University and Pennsylvania State University argued for curbing the use of neonicotinoid insecticides.

Alarming long-term effects of insecticides weaken ant colonies
This week, scientists of the Institute of Bee Health of the University of Bern have published an article in the peer-reviewed journal Communications Biology, which shows how even low doses of neonicotinoid insecticides, as they may realistically occur in contaminated soils, adversely affect the development of black garden ants (Lasius niger).

Treatments tested for invasive pest on allium crops
A Cornell University-led team of researchers field-tested 14 active ingredients in insecticides, applied in a variety of methods, to understand the best treatment options against the Allium leafminer, a growing threat to onions, garlic and leeks.

Insecticides are becoming more toxic to honey bees
Researchers discover that neonicotinoid seed treatments are driving a dramatic increase in insecticide toxicity in U.S. agricultural landscapes, despite evidence that these treatments have little to no benefit in many crops.

Time for a closer look at Pyrethroid insecticides
Columbia professors offer their perspective on a recent study on Pyrethroid, among the most widely used insecticides for public health control of vector-borne illnesses, including West Nile virus.

Scientist identify new marker for insecticide resistance in malaria mosquitoes
Researchers at LSTM have genetically modified malaria carrying mosquitoes in order to demonstrate the role of particular genes in conferring insecticide resistance.

The use of certain neonicotinoids could benefit bumblebees, new study finds
Not all neonicotinoid insecticides have negative effects on bees, according to researchers at Lund University and the Swedish University of Agricultural Sciences.

Efficient synthesis of ginkgo compound could lead to new drugs, 'green' insecticides
Chemists at Scripps Research have invented an efficient method for making a synthetic version of the plant compound bilobalide, which is naturally produced by gingko trees.

Read More: Insecticides News and Insecticides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.