Three research papers published in Nature series journals

October 17, 2019

Optoelectronic resistive random-access memory (ORRAM) for neuromorphic vision sensors - "Nature Nanotechnology"

Dr. CHAI Yang, Associate Professor, Department of Applied Physics, and his team developed an optoelectronic device that mimics the functions of human retina in image sensing, memorization, and pre-processing, with image recognition rate and efficiency exceeding existing artificial visual systems. Experimental findings demonstrate the innovation's great potential in enhancing neuromorphic visual system by simplifying the circuitry, efficiently processing overwhelming amount of dynamic visual information, and greatly reducing power consumption. It thus offers promising contribution towards the development of applications in edge computing and Internet of Things.

Continuous artificial synthesis of glucose precursor using enzyme-immobilised microfluidic reactors - "Nature Communications"

Dr. ZHANG Xuming, Associate Professor, Department of Applied Physics, and his team discovered technology to replicate the opto-fluidic system of leave vein to create micro-reactors for conducting the first phase reaction of CO2 fixation in natural photosynthesis. Experimental findings indicate that the micro-reactors requires only very small amount of RuBisCO (the enzyme involved in the first major step of photosynthesis) for continuous synthesis of glucose (the basic food material). The innovation contributes to artificial photosynthesis developments and will help relieve food crisis and produce biofuel.

Enhanced sieving from exfoliated MoS2 membranes via covalent funcationalisation - "Nature Materials"

Dr. Nicolas ONOFRIO, Assistant Professor, Department of Applied Physics, and his team developed a nanolaminate membrane based on covalently functionalised molybdenum disulfide (MoS2) nanosheets. Nanolaminate membranes made of two-dimensional (2D) materials such as graphene oxide are promising candidates for molecular sieving via size-limited diffusion in the two-dimensional capillaries, but high hydrophilicity makes these membranes unstable in water. The covalent functionalisation of exfoliated nanosheets can solve this problem by efficiently control the interlayer spacing to enhance the sieving performance of nanolaminate membranes. They demonstrate remarkable performance towards water purification and desalination, with high rejection of micropollutants and sodium chloride (NaCl) (over 90% and 87% respectively), compared to the current state of the art. The novel strategy paves the way for the preparation of membranes with tuneable sieving behaviour. The control of the surface chemistry of exfoliated 2D materials allows further exploration of the nanofluidic phenomena inside nanolaminate membranes at fundamental and practical levels for water purification or osmotic energy.

Prof. Daniel LAU, Head of the Department of Applied Physics, takes pride in the contributions of the three researchers and said, "the Department will continue to devote its efforts in the pursuit of excellence in teaching and research".

"PolyU has been undertaking cutting-edge research that delivers real impact to the academia and to the world. We are committed to nurturing our academics and researchers to collaborate locally and internationally in fundamental and translational research, and encouraging them to contribute their research findings in prestigious and world-renowned journals," said Prof. Alex WAI, Vice President (Research Development), PolyU.
-end-


The Hong Kong Polytechnic University

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.