Nav: Home

Study reveals fundamental insight into how memory changes with age

October 17, 2019

New research from King's College London and The Open University could help explain why memory in old age is much less flexible than in young adulthood.

Through experiments in mice the researchers discovered that there were dramatic differences in how memories were stored in old age, compared to young adulthood. These differences, at the cellular level, meant that it was much harder to modify the memories made in old age.

Memories are stored in the brain by strengthening the connections between nerve cells, called synapses. Recalling a memory can alter these connections, allowing memories to be updated to adapt to a new situation. Until now researchers did not know whether this memory updating process was affected by age.

The researchers trained young adult and aged mice in a memory task, finding that the animals' age did not affect their overall ability to make new memories. However, when analysing the synapses before and after the memory task, the researchers found fundamental differences between older and younger mice.

New memories were laid down via a completely different mechanism in older animals compared to younger ones. Further, in older mice the synaptic changes linked to new memories were much harder to modify than the changes seen in younger mice.

The basic biological processes for laying down memories is shared by mammals, so it is likely that memory formation in humans follows the same processes discovered in mice.

Lead researcher Professor Karl Peter Giese, from the Institute of Psychiatry, Psychology & Neuroscience at King's, said: 'Our results give a fundamental insight into how memory processes change with age. We found that, unlike in the younger mice, memories in the older mice were not modified when recalled. This 'fixed' nature of memories formed in old age was directly linked to the alternative way the memories were laid down, which our research revealed.'

'Until now it was thought that older people should be able to form memories in just the same way as younger people, so overcoming memory problems would simply involve restoring this ability,' added Professor Giese. 'However, our results suggest this is not true, and that there is an important biological difference in how memories are stored in old age compared to young adulthood.'

The results may have implications for conditions where memory recall is a problem, such as post-traumatic stress disorder (PTSD). Professor Giese suggests that ageing should be taken into consideration when treating patients with PTSD, since confronting and modifying traumatic memories is a core feature of some psychological treatments such as trauma-focused cognitive behavioural therapy.

The study is published in the journal Current Biology and is funded by the UK Biotechnology and Biological Sciences Research Council.
-end-


King's College London

Related Memory Articles:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.
Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.
Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.
Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.