Evidence of behavioral, biological similarities between compulsive overeating and addiction

October 17, 2019

(Boston)--Does yo-yo dieting drive compulsive eating? There may be a connection.

According to Boston University School of Medicine (BUSM) researchers the chronic cyclic pattern of overeating followed by undereating, reduces the brain's ability to feel reward and may drive compulsive eating. This finding suggests that future research into treatment of compulsive eating behavior should focus on rebalancing the mesolimbic dopamine system--the part of the brain responsible for feeling reward or pleasure.

An estimated 15 million people compulsively eat in the U.S. It is a common feature of obesity and eating disorders, most notably, binge eating disorder. People often overeat because it is pleasurable in the short term, but then attempt to compensate by dieting, reducing calorie intake and limiting themselves to "safe", less palatable food. However, diets often fail, causing frequent "relapse" to overeating of foods high in fat and sugar (palatable foods).

"We are just now beginning to understand the addictive-like properties of food and how repeated overconsumption of high sugar - similar to taking drugs - may affect our brains and cause compulsive behaviors," said corresponding author Pietro Cottone, PhD, associate professor of pharmacology & experimental therapeutics at BUSM and co-director of the Laboratory of Addictive Disorders.

In order to better understand compulsive and uncontrollable eating, Cottone and his team performed a series of experiments on two experimental models: one group received a high sugar chocolate-flavored diet for two days each week and a standard control diet the remaining days of the week (cycled group), while the other group, received the control diet all of the time (control group).

The group that cycled between the palatable food and the less palatable, spontaneously developed compulsive, binge eating on the sweet food and refused to eat regular food. Both groups were then injected with a psychostimulant amphetamine, a drug that releases dopamine and produces reward, and their behavior in a battery of behavioral tests was then observed.

While the control group predictably became very hyperactive after receiving amphetamine, the cycled group did not. Furthermore, in a test of the conditioning properties of amphetamine, the control group was attracted to environments where they previously received amphetamine, whereas the cycled group were not. Finally, when measuring the effects of amphetamine while directly stimulating the brain reward circuit, the control group was responsive to amphetamine, while the cycled group was not.

After investigating the biochemical and molecular properties of the mesolimbic dopamine system of both groups, the researchers determined that the cycled group had less dopamine overall, released less dopamine in response to amphetamine and had dysfunctional dopamine transporters (protein that carries dopamine back into brain cells) due to deficits in their mesolimbic dopamine system.

"We found that the cycled group display similar behavioral and neurobiological changes observed in drug addiction: specifically, a "crash" in the brain reward system," explained Cottone. "This study adds to our understanding of the neurobiology of compulsive eating behavior. Compulsive eating may derive from the reduced ability to feel reward. These findings also provide support to the theory that compulsive eating has similarities to drug addiction."

"Our data suggest that a chronic cyclic pattern of overeating will reduce the brain's ability to feel reward--feeling satiated. This results in a vicious circle, where diminished reward sensitivity may in turn be driving further compulsive eating," said lead author Catherine (Cassie) Moore, PhD, former graduate student in the Laboratory of Addictive Disorders at BUSM.

The researchers hope these findings spark new avenues of research into compulsive eating that will lead to more effective treatments for obesity and eating disorders.
-end-
This study was done in collaboration with Valentina Sabino, PhD, associate professor of pharmacology & experimental therapeutics at BUSM and co-director of the Laboratory of Addictive Disorders, Klaus Miczek, PhD and Michael Leonard from Tufts University and Nicholas Micovic, a former undergraduate research assistant in the Lab of Addictive Disorders is also a co-author on the study.

These findings appear online in the journal Neuropsychopharmacology.

This study was funded by the National Institutes of Health (NIDA, NIAAA), the Peter Paul Career Development Professorship, the McManus Charitable Trust, the Boston University Undergraduate Research Opportunities Program (UROP), and the Burroughs Wellcome Fund (through the TTPAS at Boston University).

Boston University School of Medicine

Related Dopamine Articles from Brightsurf:

Dopamine surge reveals how even for mice, 'there's no place like home'
''There's no place like home,'' has its roots deep in the brain.

New dopamine sensors could help unlock the mysteries of brain chemistry
In 2018, Tian Lab at UC Davis Health developed dLight1, a single fluorescent protein-based biosensor.

Highly sensitive dopamine detector uses 2D materials
A supersensitive dopamine detector can help in the early diagnosis of several disorders that result in too much or too little dopamine, according to a group led by Penn State and including Rensselaer Polytechnic Institute and universities in China and Japan.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Viewing dopamine receptors in their native habitat
A new study led by UT Southwestern researchers reveals the structure of the active form of one type of dopamine receptor, known as D2, embedded in a phospholipid membrane.

Significant differences exist among neurons expressing dopamine receptors
An international collaboration, which included the involvement of the research team from the Institut de Neurociències of the UAB (INC-UAB), has shown that neurons expressing dopamine D2 receptors have different molecular features and functions, depending on their anatomical localization within the striatum.

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.

Novelty speeds up learning thanks to dopamine activation
Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning.

Evidence in mice that childhood asthma is influenced by the neurotransmitter dopamine
Neurons that produce the neurotransmitter dopamine communicate with T cells to enhance allergic inflammation in the lungs of young mice but not older mice, researchers report Nov.

Chronic adversity dampens dopamine production
People exposed to a lifetime of psychosocial adversity may have an impaired ability to produce the dopamine levels needed for coping with acutely stressful situations.

Read More: Dopamine News and Dopamine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.