Nav: Home

How aerosols affect our climate

October 17, 2019

For many, the word "aerosol" might conjure thoughts of hairspray or spray paint. More accurately, though, aerosols are simply particles found in the atmosphere. They can be human-made, like from car exhaust or biomass burning, or naturally occurring, from sources such as volcanic eruptions or sea spray.

Aerosols account for one of the greater uncertainties in understanding the Earth's climate and, through a cooling effect, mask a significant portion of the warming caused by the increase in greenhouse gas concentrations.

One unresolved issue in understanding aerosol-climate interactions is why, for a unit change in the energy imbalance at the top of the atmosphere, the surface temperature change is higher for aerosols than for greenhouse gases. This is known as climate sensitivity. The conventional understanding is that the higher climate sensitivity to aerosols is due to their higher concentrations over land surfaces, which heat up and cool down faster than oceans.

In a recently published paper in the American Geophysical Union's journal Geophysical Research Letters, Yale researchers demonstrate that it is not only the geographic distribution of aerosols that explains the higher climate sensitivity but also the specific local-scale interactions with the land surface.

Using a theoretical framework to separate surface temperature response to external forcing, the study also provides mechanistic insight into spatial patterns of the local temperature change due to aerosols.

"With traditional climate models, there are huge uncertainties in how aerosols affect surface temperature," said T.C. Chakraborty, a Ph.D. student at F&ES who co-authored the paper with Xuhui Lee, the Sara Shallenberger Brown Professor of Meteorology. "This framework helps explain why and how some of these uncertainties are coming into play."

Aerosols are known to increase radiation in the longer wavelengths (longwave) and decrease radiation in the shorter wavelengths (shortwave). The strength of these effects depends on the size and chemical nature of the aerosol particles. Using the framework to analyze a massive dataset developed by NASA, Chakraborty found that although the longwave effect of aerosols has generally been considered by the scientific community to be less important, the climate is more sensitive to it than to the shortwave effect.

This is because of the absence of the shortwave effect at night, a time when the atmosphere is more stable -- and thus more sensitive to radiation. It is also the result of the high climate sensitivity in arid regions, where the longwave effect is prevalent due to the presence of aerosols from coarse mineral dust. Combined, the longwave and shortwave effects reduce the terrestrial diurnal temperature range by almost one degree Fahrenheit. Aggregating the eight major regions of interest used in the study, about half of this reduction is due to human-made aerosols.

There are also long-term trends, Chakraborty said, that show an intensification of the local climate sensitivity in the tropics due to deforestation between 1980 and 2018, demonstrating the importance of vegetation in regulating interactions between aerosols and the climate.
-end-


Yale School of Forestry & Environmental Studies

Related Greenhouse Gases Articles:

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.
Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.
White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.
Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.
What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.
Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.
An innovation that opens horizons for greenhouse gases' remote monitoring
Brazilian researchers combine chip technology with laser calibration to enhance an infrared spectrometer which could be integrated to drones, smartphones and other portable devices.
New research shows fertilization drives global lake emissions of greenhouse gases
A paper published this week in the journal Limnology and Oceanography Letters is the first to show that lake size and nutrients drive how much greenhouse gases are emitted globally from lakes into the atmosphere.
Oil and gas wells as a strong source of greenhouse gases
Boreholes in the North Sea could constitute a significantly more important source of methane, a strong greenhouse gas, than previously thought.
Extreme low-oxygen eddies in the Atlantic produce greenhouse gases
In 2014, an international research team led by the Kiel Cluster of Excellence 'The Future Ocean' and the GEOMAR Kiel was able to investigate in detail eddies in the Atlantic Ocean which were characterized by extremely low oxygen concentrations.
More Greenhouse Gases News and Greenhouse Gases Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.