Nav: Home

Parasite paralysis: A new way to fight schistosomiasis?

October 17, 2019

Scientists have isolated a natural chemical that acts as a potent kryptonite against parasitic worms that burrow through human skin and cause devastating health problems. In a paper publishing October 17 in the open-access journal PLOS Biology, a research team led by Phillip Newmark at the Morgridge Institute for Research describe the successful characterization of this chemical, which could help in finding new ways to fight the neglected tropical disease schistosomiasis.

Schistosomiasis, also known as bilharzia, is caused by schistosome infection and affects more than 240 million people in Africa, Asia and parts of South America. In this work the scientists focused on one phase of the schistosome life cycle that could be an intriguing target for preventing infection. Schistosomes seek out freshwater snails as hosts in order to produce millions of tiny fork-tailed creatures called cercaria, which are then unleashed in the water and seek out mammals to infect. Their frenzied swimming allows them to penetrate human skin in minutes.

The story started nearly 40 years ago, when a 1981 paper by Margaret Stirewalt and Fred Lewis of the Biomedical Research Institute in Rockville, Maryland, described the intriguing fact that tiny aquatic creatures called rotifers also live on these snails and release a chemical compound that paralyzes schistosome cercariae on contact. Despite this tantalizing report, scientists had not probed its biochemistry further in the intervening decades.

In the new paper, the Newmark lab and collaborators in Jonathan Sweedler's laboratory at the University of Illinois at Urbana-Champaign report their successful effort to purify and chemically define this molecule, calling it "Schistosome Paralysis Factor" (SPF). Lead author and UW-Madison graduate student Jiarong Gao placed SPF in various concentrations in water and demonstrated that the compound immobilized the cercariae, which promptly sank to the bottom of the water and remained in that state. Further, she showed that cercaria exposed to SPF were unable to infect mice.

Newmark says the results could open a promising new path to controlling schistosomiasis. Currently only a single drug, praziquantel, is used to treat infection and is given to millions of school children each year. But it only kills adult schistosomes and does not stop reinfection.

"Any time you're talking about treating that many people with just one drug and no alternative, you're really concerned about the ability of the parasites to develop resistance," Newmark says. "And that's becoming more and more of an issue as the geographic range of the parasite may be spreading and hybrids between human- and livestock-infecting schistosome species are being reported."
Peer-reviewed; Experimental Study; Animals

In your coverage please use this URL to provide access to the freely available article in PLOS Biology:

Citation: Gao J, Yang N, Lewis FA, Yau P, Collins JJ III, Sweedler JV, et al. (2019) A rotifer-derived paralytic compound prevents transmission of schistosomiasis to a mammalian host. PLoS Biol 17(10): e3000485.

Funding: This work was supported by: Howard Hughes Medical Institute ( Investigator Award to PAN; International Student Research Fellowship to JG; National Institute of Neurological Diseases and Stroke ( R01 NS031609 to JVS; National Institute on Drug Abuse ( P30 DA018310 to JVS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: I have read the journal's policy and the authors of this manuscript have the following competing interest: A patent application has been filed by the Wisconsin Alumni Research Foundation and is pending. Use of a Rotifer-Derived Compound and its Analogs for Preventing Schistosomiasis. US Application #: 16/445766, covers the use of this novel molecule and its derivatives in preventing schistosome infection.


Related Schistosomiasis Articles:

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.
Satellite, drone photos could help predict infections of a widespread tropical disease
An international team has discovered a cheap and efficient way to identify transmission hotspots for schistosomiasis.
Parasite paralysis: A new way to fight schistosomiasis?
Scientists have isolated a natural chemical that acts as a potent kryptonite against parasitic worms that burrow through human skin and cause devastating health problems.
Study shows interactions between bacteria and parasites
A team at the Technical University of Munich (TUM) has completed the first study of the effects of a simultaneous infection with blood flukes (schistosomes) and the bacterium Helicobacter pylori -- a fairly common occurrence in some parts of the world.
Super shrimp designed at Ben-Gurion University could increase yield and prevent disease
''We were able to achieve the monosex population without the use of hormones or genetic modifications and thus address two major agricultural considerations: monosex populations and ecological concerns,'' says Levy.
Poverty as disease trap
The realities of subsistence living in a region of Senegal hard hit by schistosomiasis make reinfection likely, despite mass drug administration.
How fat prawns can save lives
New research led by University of California, Berkeley, scientists provides a roadmap for how entrepreneurs can harness freshwater prawns' voracious appetite for snails to reduce the transmission of schistosomiasis-causing parasites while still making a profit selling the tasty animals as food.
Detection of unusual hybrid schistosomes in Malawi
LSTM's Professor Russell Stothard is senior author on a new paper in which researchers from the UK and Malawi have described the unusual occurrence of novel schistosome hybrids infecting children along the Shire River Valley.
Gene-editing tool CRISPR/Cas9 shown to limit impact of certain parasitic diseases
For the first time, researchers at the George Washington University have successfully used the gene-editing tool CRISPR/Cas9 to limit the impact of parasitic worms responsible for schistosomiasis and for liver fluke infection, which can cause a diverse spectrum of human disease including bile duct cancer. 
GW researchers publish review article on developing vaccines for human parasites
Researchers from the George Washington University published an article in Trends in Parasitology outlining their lessons learned while creating vaccine candidates for hookworm and schistosomiasis.
More Schistosomiasis News and Schistosomiasis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at