Parasite paralysis: A new way to fight schistosomiasis?

October 17, 2019

Scientists have isolated a natural chemical that acts as a potent kryptonite against parasitic worms that burrow through human skin and cause devastating health problems. In a paper publishing October 17 in the open-access journal PLOS Biology, a research team led by Phillip Newmark at the Morgridge Institute for Research describe the successful characterization of this chemical, which could help in finding new ways to fight the neglected tropical disease schistosomiasis.

Schistosomiasis, also known as bilharzia, is caused by schistosome infection and affects more than 240 million people in Africa, Asia and parts of South America. In this work the scientists focused on one phase of the schistosome life cycle that could be an intriguing target for preventing infection. Schistosomes seek out freshwater snails as hosts in order to produce millions of tiny fork-tailed creatures called cercaria, which are then unleashed in the water and seek out mammals to infect. Their frenzied swimming allows them to penetrate human skin in minutes.

The story started nearly 40 years ago, when a 1981 paper by Margaret Stirewalt and Fred Lewis of the Biomedical Research Institute in Rockville, Maryland, described the intriguing fact that tiny aquatic creatures called rotifers also live on these snails and release a chemical compound that paralyzes schistosome cercariae on contact. Despite this tantalizing report, scientists had not probed its biochemistry further in the intervening decades.

In the new paper, the Newmark lab and collaborators in Jonathan Sweedler's laboratory at the University of Illinois at Urbana-Champaign report their successful effort to purify and chemically define this molecule, calling it "Schistosome Paralysis Factor" (SPF). Lead author and UW-Madison graduate student Jiarong Gao placed SPF in various concentrations in water and demonstrated that the compound immobilized the cercariae, which promptly sank to the bottom of the water and remained in that state. Further, she showed that cercaria exposed to SPF were unable to infect mice.

Newmark says the results could open a promising new path to controlling schistosomiasis. Currently only a single drug, praziquantel, is used to treat infection and is given to millions of school children each year. But it only kills adult schistosomes and does not stop reinfection.

"Any time you're talking about treating that many people with just one drug and no alternative, you're really concerned about the ability of the parasites to develop resistance," Newmark says. "And that's becoming more and more of an issue as the geographic range of the parasite may be spreading and hybrids between human- and livestock-infecting schistosome species are being reported."
-end-
Peer-reviewed; Experimental Study; Animals

In your coverage please use this URL to provide access to the freely available article in PLOS Biology:https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000485

Citation: Gao J, Yang N, Lewis FA, Yau P, Collins JJ III, Sweedler JV, et al. (2019) A rotifer-derived paralytic compound prevents transmission of schistosomiasis to a mammalian host. PLoS Biol 17(10): e3000485. https://doi.org/10.1371/journal.pbio.3000485

Funding: This work was supported by: Howard Hughes Medical Institute (https://www.hhmi.org/): Investigator Award to PAN; International Student Research Fellowship to JG; National Institute of Neurological Diseases and Stroke (https://www.ninds.nih.gov/): R01 NS031609 to JVS; National Institute on Drug Abuse (https://www.drugabuse.gov/): P30 DA018310 to JVS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: I have read the journal's policy and the authors of this manuscript have the following competing interest: A patent application has been filed by the Wisconsin Alumni Research Foundation and is pending. Use of a Rotifer-Derived Compound and its Analogs for Preventing Schistosomiasis. US Application #: 16/445766, covers the use of this novel molecule and its derivatives in preventing schistosome infection.

PLOS

Related Schistosomiasis Articles from Brightsurf:

Finding the Achilles' heel of a killer parasite
Two studies led by UT Southwestern researchers shed light on the biology and potential vulnerabilities of schistosomes -- parasitic flatworms that cause the little-known tropical disease schistosomiasis.

Gastrointestinal innovation holds potential for treating variety of conditions
Proof-of-concept studies in models of lactose intolerance, diabetes and infectious disease demonstrate potential applications.

Pesticides speed the spread of deadly waterborne pathogens
Widespread use of pesticides can speed the transmission of the debilitating disease schistosomiasis, while also upsetting the ecological balances in aquatic environments that prevent infections, finds a new study led by researchers at the University of California, Berkeley.

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.

Satellite, drone photos could help predict infections of a widespread tropical disease
An international team has discovered a cheap and efficient way to identify transmission hotspots for schistosomiasis.

Parasite paralysis: A new way to fight schistosomiasis?
Scientists have isolated a natural chemical that acts as a potent kryptonite against parasitic worms that burrow through human skin and cause devastating health problems.

Study shows interactions between bacteria and parasites
A team at the Technical University of Munich (TUM) has completed the first study of the effects of a simultaneous infection with blood flukes (schistosomes) and the bacterium Helicobacter pylori -- a fairly common occurrence in some parts of the world.

Super shrimp designed at Ben-Gurion University could increase yield and prevent disease
''We were able to achieve the monosex population without the use of hormones or genetic modifications and thus address two major agricultural considerations: monosex populations and ecological concerns,'' says Levy.

Poverty as disease trap
The realities of subsistence living in a region of Senegal hard hit by schistosomiasis make reinfection likely, despite mass drug administration.

How fat prawns can save lives
New research led by University of California, Berkeley, scientists provides a roadmap for how entrepreneurs can harness freshwater prawns' voracious appetite for snails to reduce the transmission of schistosomiasis-causing parasites while still making a profit selling the tasty animals as food.

Read More: Schistosomiasis News and Schistosomiasis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.