A simpler way to make some medicines

October 17, 2019

COLUMBUS, Ohio - Organic chemists at The Ohio State University have figured out how to synthesize the most common molecule arrangement in medicine, a scientific discovery that could change the way a number of drugs - including one most commonly used to treat ovarian cancer - are produced.

Their discovery, published today in the journal Chem, gives drug makers a crucial building block for creating medicines that, so far, are made with complex processes that result in a lot of waste.

This new finding may allow drug makers to create this building block in just one step, said David Nagib, the study's senior author and assistant professor in the Department of Chemistry and Biochemistry at Ohio State.

A drug's molecules must interact in just the right way with the molecules inside the human body to be effective. It's like when two people meet: Each person must use their right hand to shake hands with each other. If one person tries to use their left hand, it just doesn't work.

"Another way to look at it is that drugs work like a lock and key, and you have to put a left-handed key into a left-handed lock," Nagib said.

The most common arrangement of molecules used in drugs so they can interact effectively with human molecules is called a chiral piperidine.

Currently, drug makers synthesize this molecule arrangement using a circuitous process that involves creating a mixture and essentially throwing half that mixture out.

"Previously, there was no available method that simply swapped a single carbon-hydrogen bond for a carbon-carbon bond like this," said Zuxiao Zhang, the study's lead author and a postdoctoral researcher in Nagib's lab. "And what we figured out is, through free radicals, we can make this happen."

The heart of their discovery lies in the chemical bonds that make up a molecule. The researchers considered a number of drugs and looked at the way their molecules are created. One, the anti-cancer drug niraparib - a pill used to treat ovarian cancer - uses a chiral piperidine. But to produce it, the drug's makers have to create a number of symmetric mixtures, then strip parts away until they get to the asymmetric molecule necessary to make the drug effective.

Creating that chiral six-sided ring synthetically was a problem that had troubled chemists for decades. It was so tricky, in fact, that when Zhang first approached Nagib about tackling it, Nagib was unsure it was the right problem to solve.

"The success of this chemistry was entirely thanks to Zuxiao's courage and ambition to tackle such a hard problem," Nagib said.

It is a fundamental change that Nagib hopes might make a number of medicines easier to produce.

"It's a different way of doing things," he said. "It's like flying an airplane over the Atlantic. Is that a shortcut, instead of having a boat? Yes, it's a more efficient way of going, but it's also a fundamentally different way. If you fly across the Atlantic, now you can do other things - you can fly other places. That's what this."
-end-
This work was supported by the National Institutes of Health and the National Science Foundation.

Contacts:

David Nagib, nagib.1@osu.edu

Zuxiao Zhang, zhang.8917@osu.edu

Written by:

Laura Arenschield: arenschield.2@osu.edu; 614-292-9475

URL : http://news.osu.edu/a-simpler-way-to-make-some-medicines/

Ohio State University

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.