Nav: Home

Researcher invents an easy-to-use technique to measure the hydrophobicity of micro- and nanoparticle

October 17, 2019

The scientific and industrial communities who work with micro- and nanoparticles continue to labor with the challenge of effective particle dispersion. Most particles that disperse in liquids aggregate rapidly, and eventually precipitate, thereby separating from the liquid phase. While it is commonly accepted that the hydrophobicity of particles-- how quickly water repels off a surface--determines their dispersion and aggregation potential, there has been no easy-to-use method to quantitatively determine the hydrophobicity of these tiny particles.

Yi Zuo, University of Hawaii at Manoa College of Engineering and pediatrics professor, has invented a groundbreaking method that allows for easy determination of the surface free energy of particles as a quantitative measure of particle hydrophobicity. The research "An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles," was published in the October 2019 issue of the scientific journal Analytical Chemistry and showcased on the cover.

"The major advantage of this method resides in its simplicity," said Zuo. "For the first time, the scientific and industrial community will have access to an inexpensive and easy-to-use method for quantitatively determining the hydrophobicity of particulate matter. Our method relies on a novel measuring principle and common laboratory procedures and equipment such as pipetting and visible-light spectroscopy."

Zuo has demonstrated the feasibility of this method in determining the surface free energy of various micro- and nanoparticles, such as carbon nanotubes, graphene and polystyrene particles.

The study may have a far-reaching implication for many scientific and industrial applications and disciplines that involve particulate matter. "For example, our method can be used to quantify the hydrophobicity of nanoparticles, which is of crucial importance for the study of potential health risks and biomedical applications of nanomaterials." Zuo said. "It may also find application in microbial science because the surface free energy of bacterial cells determines the cellular adhesion and proliferation in biofilms."
-end-
This research was supported by a National Science Foundation award (CBET-1604119). With this grant, as well as with support from the Hawaii Community Foundation, Zuo is studying the potential health effects of nanomaterials and their biomedical applications using novel experimental techniques developed in Zuo's Laboratory of Biocolloids and Biointerfaces.

University of Hawaii at Manoa

Related Nanoparticles Articles:

Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
Study models new method to accelerate nanoparticles
In a new study, researchers at the University of Illinois and the Missouri University of Science and Technology modeled a method to manipulate nanoparticles as an alternative mode of propulsion for tiny spacecraft that require very small levels of thrust.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
Nanoparticles take a fantastic, magnetic voyage
MIT engineers have designed tiny robots that can help drug-delivery nanoparticles push their way out of the bloodstream and into a tumor or another disease site.
Quantum optical cooling of nanoparticles
One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature.
Nanoparticles help realize 'spintronic' devices
For the first time researchers have demonstrated a new way to perform functions essential to future computation three orders of magnitude faster than current commercial devices.
Directed evolution builds nanoparticles
Directed evolution is a powerful technique for engineering proteins. EPFL scientists now show that it can also be used to engineer synthetic nanoparticles as optical biosensors, which are used widely in biology, drug development, and even medical diagnostics such as real-time monitoring of glucose.
What happens to magnetic nanoparticles once in cells?
Although magnetic nanoparticles are being used more and more in cell imaging and tissue bioengineering, what happens to them within stem cells in the long term remained undocumented.
Watching nanoparticles
Stanford researchers retooled an electron microscope to work with visible light and gas flow, making it possible to watch a photochemical reaction as it swept across a nanoparticle the size of a single cold virus.
Nanoparticles to treat snakebites
Venomous snakebites affect 2.5 million people, and annually cause more than 100,000 deaths and leave 400,000 individuals with permanent physical and psychological trauma each year.
More Nanoparticles News and Nanoparticles Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab