Last ion engine thrust puts SMART-1 on the right track for its Moon encounter

October 18, 2004

From 10 to 14 October the ion engine of ESA's SMART-1 carried out a continuous thrust manoeuvre in a last major push that will get the spacecraft to the Moon capture point on 13 November.

SMART-1, on its way to the Moon, has now covered more than 80 million kilometres. Its journey started on 27 September 2003, when the spacecraft was launched on board an Ariane 5 rocket from Europe's spaceport in Kourou, French Guiana. Since then, it has been spiralling in progressively larger orbits around Earth, to eventually be captured by the lunar gravity and enter into orbit around the Moon in November this year.

The SMART-1 mission was designed to pursue two main objectives. The first is purely technological: to demonstrate and test a number of space techniques to be applied to future interplanetary exploration missions. The second goal is scientific, mainly dedicated to lunar science. It is the technology demonstration goal, in particular the first European flight test of a solar-powered ion engine as a spacecraft's main propulsion system, that gave shape to the peculiar route and duration (13 months) of the SMART-1 journey to the Moon.

The long spiralling orbit around Earth, which is bringing the spacecraft closer and closer to the Moon, is needed for the ion engine to function and be tested over a distance comparable to that a spacecraft would travel during a possible interplanetary trip. The SMART-1 mission is also testing the response of a spacecraft propelled by such an engine during gravity-assisted manoeuvres. These are techniques currently used on interplanetary journeys, which make use of the gravitational pull of celestial objects (e.g. planets) for the spacecraft to gain acceleration and reach its final target while saving fuel.

In SMART-1's case, the Moon's gravitational pull has been exploited in three 'lunar resonance' manoeuvres. The first two successfully took place in August and September 2004. The last resonance manoeuvre was on 12 October, during the last major ion engine thrust, which lasted nearly five days, from 10 to 14 October. Thanks to this final thrust, SMART-1 will make two more orbits around Earth without any further need to switch on the engine, apart from minor trajectory correction if needed. The same thrust will allow the spacecraft to progressively fall into the natural sphere of attraction of the Moon and start orbiting around it from 13 November, when it is 60 000 kilometres from the lunar surface.

SMART-1 will reach its first perilune (initial closest distance from the lunar surface) on 15 November, while the ion engine is performing its first and major thrust in orbit around the Moon. After that it will continue orbiting around the Moon in smaller loops until it reaches its final operational orbit (spanning between 3000 and 300 kilometres over the Moon's poles) in mid-January 2005. From then, for six months Smart-1 will start the first comprehensive survey of key chemical elements on the lunar surface and will investigate the theory of how the Moon was formed.
For further information, please contact: ESA Media Relations Division
Tel: 33-1-53-69-7155
Fax: 33-1-53-69-7690

European Space Agency

Related Lunar Surface Articles from Brightsurf:

Research helps people, lunar rovers, get there on time
Illinois graduate student Pranay Thangeda relies on the bus system in Champaign-Urbana to get to class.

Digging into the far side of the moon: Chang'E-4 probes 40 meters into lunar surface
A little over a year after landing, China's spacecraft Chang'E-4 is continuing to unveil secrets from the far side of the Moon.

One small grain of moon dust, one giant leap for lunar studies
Scientists have found a new way to analyze the chemistry of the moon's soil using a single grain of dust brought back by Apollo 17 astronauts in 1972.

New research sheds light on the ages of lunar ice deposits
The discovery of ice deposits in craters scattered across the Moon's south pole has helped to renew interest in exploring the lunar surface.

Study suggests ice on lunar south pole may have more than 1 source
New research sheds light on the ages of ice deposits reported in the area of the Moon's south pole -- information that could help identify the sources of the deposits and help in planning future human exploration.

Reconstructing the first successful lunar farside landing
A research team, headed by Prof. LI Chunlai from the National Astronomical Observatories of Chinese Academy of Sciences has published a full reconstruction of the Chang'E-4's landing.

NASA's LRO sheds light on lunar water movement
Scientists using an instrument aboard LRO observed water molecules moving around the dayside of the moon.

NASA's Solar Dynamics Observatory catches lunar freeze frame
On March 6, NASA's Solar Dynamics Observatory watched a lunar transit in space -- one in which the satellite's path made the Moon appear to stand still, then backtrack.

First look: Chang'e lunar landing site
On Jan. 30, NASA's Lunar Reconnaissance Orbiter caught views of the Chinese Chang'e 4 lander on the floor of the Moon's Von Kármán crater.

Scientists explain formation of lunar dust clouds
Physicists from the Higher School of Economics and Space Research Institute have identified a mechanism explaining the appearance of two dusty plasma clouds resulting from a meteoroid that impacted the surface of the Moon.

Read More: Lunar Surface News and Lunar Surface Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to