Protein involved in 'mad cow' disease

October 18, 2005

The PrPC is a normal physiological protein, especially present in the central nervous system, including that of the human, with functions that are little known as yet. Altered prionic proteins, pathogens, infectants, i.e. prions, are responsible for spongiform encephalopathies, amongst these being bovine spongiform encephalopathy (BSE or mad cow disease). In order to operate, prions require the presence of the PrPC. Thus, the importance of this investigation for the location of the PrPC in the central nervous system.

Knowing where in the central nervous system the prions operate

Locating the PrPC meant being able to identify which places in the central nervous system the prions operate. The findings enabled the research team to establish that the PrPC is a protein involved in the neuronal metabolism of calcium. Moreover, the existence of neurones without PrPC and surrounded by perineuronal nests breaks with the hypothesis, to date, that the disappearance of such nests - a special form of extracellular matrix - is a primary event in the course of spongiform encephalopathies; rather it is secondary event.

According to the researchers' observations, the loss of these nests and consequent neuronal death are due to the damage produced after the appearance of the prions in the brain, where they act upon such perineuronal nests, amongst other structures.

According to the researchers' comments, extrapolating these results from the rat to the human is valid, given that similar results had been obtained after carrying out the study on human brains. Moreover, this work and others carried out on the brains of the autochthonous Pyrenees breed of cow will help to explain the operating mechanisms of the prions in bovine spongiform encephalopathy.

This study, published in Brain Research, is an addition to the work of the Department of Pathological Histology and Anatomy at the University of Navarra regarding the manner in which prions enter the digestive tube of bovine animals, from which organ they enter the central nervous system, causing the mad cow disease or bovine spongiform encephalopathy.

The authors are José Luis Velayos and Francisco José Moleres, research scientists at the Department of Anatomy at the University of Navarra.
-end-


Elhuyar Fundazioa

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.