Receptor that enables clear corneas is identified

October 18, 2006

The cornea stays clear by expressing a soluble form of a receptor that traps factors enabling growth of vision-obstructing blood vessels, researchers say.

When sflt-1, a free-floating receptor for vascular endothelial growth factor A, is eliminated, vision-obstructing blood vessels start growing, teams of researchers led by the Medical College of Georgia and University of Kentucky report in Nature. The paper was published online Oct. 18 and will be in the Oct. 26 print issue.

"Sflt-1 is a handcuff essentially," says Dr. Balamurali K. Ambati, corneal specialist at MCG and the Veterans Affairs Medical Center in Augusta and the study's first author. Using multiple approaches to unlock those cuffs, from neutralizing antibodies to gene ablation, mice corneas consistently developed blood vessels.

"The standard paradigm has been the cornea is avascular because it has lots of anti-angiogenic molecules. And it does," he says. "But knockdown of the others does not cause blood vessels to enter the cornea."

Flt-1's role as VEGF receptor has been known; it is abundant on cell membranes of blood vessel walls where it helps initiate blood vessel growth. In fact, its soluble form has been studied for anti-tumor potential.

However its newfound role in corneal clarity opens the door for exploring its use to eliminate unwanted blood vessels in the cornea that can follow injury, including contact lens use or a chemical burn, as well as blinding proliferation occurring in the retina with macular degeneration and diabetic retinopathy.

"If we understand what keeps the cornea avascular in the first place, that will hopefully help us restore it when that is breached," Dr. Ambati says of the cornea, which lets light into the eye and focuses two-thirds of it.

"The molecule responsible for corneal avascularity is much like the holy grail of vascular biology and our identification of VEGF receptor-1 as that candidate has far-reaching implications for a variety of neovascular diseases such as macular degeneration, diabetic retinopathy, cancer and atherosclerosis," said Dr. Jayakrishna Ambati, ophthalmologist and vice chair of the University of Kentucky Department of Ophthalmology & Visual Sciences.

In two animal models known to have blood vessels in their corneas - corn1 and Pax6 mice - they found no corneal expression of sflt-1. When they gave recombinant sflt-1, the animals' corneas cleared. Pax6 mice have a mutant version of Pax6 protein, which is involved in eye development; humans with a rare disease called aniridia, in which the irises are missing, also have this mutation.

They found the corneas of manatees, which have unusual, naturally vascularized corneas, also do not express sflt-1. Interestingly, most marine life, including whales, have clear corneas, as do shallow-water dwelling dugongs or sea cows - which are the same order of mammals as manatees - and elephants, the closest known terrestrial evolutionary relative of manatees, the researchers say.

"The correlation between sflt-1 expression and corneal avascularity in diverse mammals supports an evolutionarily conserved role for sflt-1 conferring the cloak of corneal avascularity," they write.

The finding of sflt-1's critical role in corneal clarity also opens a Pandora's box, because the avascular tissue is typically used to study drugs that stop dangerous new blood vessel growth that can occur with cancer, diabetes and macular degeneration.

"The cornea is a logical place to study these drugs because you don't have to wonder which blood vessels are abnormal: they all are," says Dr. Balamurali Ambati. "But the finding that sflt-1 is responsible for corneal avascularity has implications for the relevance of these tests because we would want to know if a candidate drug is really working or working through sflt-1 in preventing angiogenesis."

No doubt sflt-1 is vigilant, keeping blood vessels at bay when the cornea's oxygen is compromised by contact lenses or even just sleeping. Since the cornea is avascular, it counts on air for oxygen, so any barrier, even an eyelid, could cause problems. Instead researchers found levels of the VEGF-binder increase dramatically when oxygen availability drops, such as during sleep.

As they pursue its clinical potential, researchers want to study the regulators that switch the gene from producing membrane-bound flt-1 to making the roaming soluble form. "They have the same parent gene," says Dr. Balamurali Ambati. "Why sometimes does it make one and sometimes it makes the other? What controls the switch is of great interest."
-end-
Other contributing institutions include Department of Ophthalmology, Nagoya City University Medical School, Nagoya, Japan; Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville; Molecular and Cell Biology Laboratory, Rome; University of Florida College of Veterinary Medicine, Gainesville, Fla.; Department of Pathology, Microbiology and Immunology, University of California, Davis; Department of Pathology, Sea World, San Diego; The Eye Pathology Laboratory, Wilmer Institute and Department of Pathology, Johns Hopkins Medical Institutions, Baltimore; Division of Human Gene Therapy, The Gene Therapy Center, University of Alabama at Birmingham; School of Tropical Environment Studies and Geography; James Cook University, Australia; Department of Medical Genetics, University of Wisconsin, Madison; School of Medical Sciences, University of Aberdeen, United Kingdom; Department of Physiology & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia; Institute of Medical Science, University of Tokyo, Japan; Department of Molecular Oncology, Genentech, Inc., South San Francisco; and the Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Naples.

Medical College of Georgia at Augusta University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.