New theory explains enhanced superconductivity in nanowires

October 18, 2006

CHAMPAIGN, Ill. -- Superconducting wires are used in magnetic resonance imaging machines, high-speed magnetic-levitation trains, and in sensitive devices that detect variations in the magnetic field of a brain. Eventually, ultra-narrow superconducting wires might be used in power lines designed to carry electrical energy long distances with little loss.

Now, researchers at the University of Illinois at Urbana-Champaign not only have discovered an unusual phenomenon in which ultra-narrow wires show enhanced superconductivity when exposed to strong magnetic fields, they also have developed a theory to explain it.

Magnetic fields are generally observed to suppress a material's ability to exhibit superconductivity - the ability of materials to carry electrical current without any resistance at low enough temperatures. Deviations from this convention have been observed, but there is no commonly accepted explanation for these exceptions, although several ideas have been proposed.

As reported in the Sept. 29 issue of Physical Review Letters, U. of I. physics professor Alexey Bezryadin (pronounced BEZ-ree-ah-dun) and his research group have studied the effect of applying a magnetic field to ultra-narrow superconducting wires only a few hundred atoms across, and have used a microscopic theory proposed by physics professor Paul Goldbart and his team to explain the results.

"My group discovered that magnetic fields can enhance the critical current in superconducting wires with very small diameters," Bezryadin said. "We spoke with many colleagues and reached the consensus that this phenomenon is indeed curious."

Magnetic fields have long been known to suppress superconductivity by raising the kinetic energy of the electrons and by influencing the electron spins. Magnetic atoms, if present in the wires, also inhibit superconductivity.

Nevertheless, as reported in the Sept. 15 issue of Europhysics Letters, Goldbart, postdoctoral researcher Tzu-Chieh Wei and graduate student David Pekker proposed that the enhancement observed by Bezyradin's group was due to magnetic moments in the wires.

"Even though the two effects - magnetic fields and magnetic moments - work separately to diminish superconductivity, together one effect weakens the other, leading to an enhancement of the superconducting properties, at least until very large fields are applied," Goldbart said.

As for the origin of these magnetic moments, the collaborating groups proposed that exposure of the wires to oxygen in the atmosphere causes magnetic moments to form on the wire surfaces. On their own, the moments weaken the superconductivity, but the magnetic field inhibits their ability to do this. This effect shows up in ultra-narrow wires because so many of their atoms lie near the surface, where the magnetic moments form.

With postdoctoral research associate Andrey Rogachev (now a physics professor at the University of Utah) and graduate student Anthony Bollinger, Bezryadin deposited either niobium or an alloy of molybdenum and germanium onto carbon nanotubes to fabricate wires that were less than 10 nanometers wide. The superconductivity of these wires under a range of applied magnetic fields was examined, and the experimental results were compared with the proposed theory, revealing an excellent correlation between the two.

"The results of this work may provide a key to explaining our previous findings that nanowires undergo an abrupt transition from superconductor to insulator as they get smaller," said Bezryadin, referring to work published in the Sept. 27 issue of Europhysics Letters.
-end-
The work was funded by the U.S. Department of Energy and the National Science Foundation.

University of Illinois at Urbana-Champaign

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.