Exercise can aid recovery after brain radiation

October 18, 2009

DURHAM, N.C. -- Exercise is a key factor in improving both memory and mood after whole-brain radiation treatments in rodents, according to data presented by Duke University scientists at the Society for Neuroscience meeting.

"This is the first demonstration that exercise can prevent a decline in memory after whole-brain radiation treatment," said lead researcher and graduate student Sarah Wong-Goodrich of the Duke Department of Psychology and Neuroscience. Whole-brain radiation is sometimes used to treat brain cancers in humans.

"We found that exercise following radiation prevented a decline in erasable memory in mice and this is analogous to the type of memory problems people have after whole-brain radiation for brain tumors," said senior researcher Christina Williams, Ph.D., professor of psychology and neuroscience. "This is the type of short-term memory people use to find their car after they have parked it in a large lot. After radiation, this type of memory becomes impaired in many people."

In the experiment, one group of mice that had brain radiation stayed in their cages under normal conditions, living with other mice, eating and playing as they liked. But a different group of mice that had radiation were given daily access to a cage with a running wheel, which they could use if they wanted to.

The animals were tested for how well they remembered spatial features in their environment for locating a preferred escape hole to exit a well-lit maze and hide. The mice completed tests at the two-week and the three-month mark after their irradiation to get a baseline and then to see how they fared over time.

Mice that had radiation plus access to running did as well at remembering where the hole was as normal mice that didn't exercise. Irradiated mice that had no access to an exercise wheel eventually showed no particular preference for the section of the maze with the escape hole.

"It was remarkable that the irradiated, running mice were just like the normal, non-irradiated mice that didn't exercise," said Wong-Goodrich, who conducted the experiments in the Williams' laboratory. "We were expecting some memory retention issues with a longer delay and there weren't any."

Exercise appears to actually protect against the loss of memory and the increase in depressive-like behaviors, Wong-Goodrich said.

The mice also were tested for depressive-like behavior, using gentle restraints which they worked to escape from. Two weeks after radiation, the irradiated mice gave up sooner than the normal mice. Three months after radiation, the runners that had brain radiation, however, tried just as hard as the normal mice, while their non-running counterparts gave up more readily.

Researcher Lee W. Jones, Ph.D., research director of the Duke Center for Cancer Survivorship and associate professor in the Duke Department of Radiation Oncology, said the findings show "how powerful exercise is and how many benefits it can provide, and even restore, after radiation."

Jones said that he is beginning to look at neurocognitive outcomes for cancer patients at Duke who undergo radiation, in addition to their body health indicators. "Once a patient gets a doctor's clearance, I think exercise is a good thing during whole-brain radiation," he said. "I think telling patients to take it easy is the worst advice we can give, because we know they will become deconditioned physically, and this study shows exercise potentially could provide cognitive and psychological benefits."

Radiation knocks out the ability of the brain to produce new nerve cells, called neurons. Williams said that they were able to measure increases in certain growth factors in the exercising mice that might be necessary to help cells divide.

Exercise might help by increasing blood flow to the hippocampus area of the brain, which is an important structure for learning, memory, and spatial navigation, Wong-Goodrich said.
-end-
This work was supported by grants from the National Institutes of Health and the Duke University Comprehensive Cancer Center.

Madeline L. Pfau, a Duke undergraduate from the Duke Department of Psychology and Neuroscience, and Catherine T. Flores of the Duke Department of Surgery, were also researchers on this project.

Duke University Medical Center

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.