U of C chemists discover recipe to design a better type of fuel cell

October 18, 2009

Fuel cells are often touted as one method to help decrease society's addiction to fossil fuels. But there is still a lot of work to be done before fuel cells will be ready for mass market to be used in transportation, home heating and portable power for emergencies.

U of C chemists Jeff Hurd and George Shimizu have taken the science behind a specific type of fuel cell towards a higher level of design. They have discovered a new material that allows a PEM fuel cell, known as a polymer electrolyte membrane fuel cell, to work at a higher temperature. This discovery is extremely important in terms of increasing the efficiency and decreasing the cost of PEM fuel cells.

"This research will alter the way researchers have to this point perceived candidate materials for fuel cell applications," says Shimizu a professor in the Department of Chemistry at the University of Calgary.

A research paper by Shimizu, Hurd, Ramanathan Vaidhyanathan and Venkataraman Thangadurai of the University of Calgary, and Christopher Ratcliffe and Igor Moudrakovski of the Steacie Institute for Molecular Sciences, National Research Council, has just been published in Nature Chemistry online. Shimizu filed a patent with the US patent office last year.

A fuel cell is an electrochemical energy conversion device which converts the chemicals hydrogen and oxygen into water and electrical energy. Water usually carries the ions (protons) in a hydrogen fuel cell but this research uses higher boiling molecules trapped in a molecular scaffolding.

Currently, PEM fuel cells can produce energy from hydrogen below 90 °C, just under the boiling point of water. With Shimizu's material, energy can be produced at a higher temperature, up to 150 °C. This could ultimately make the fuel cell cheaper to produce because at a higher temperature less expensive metals can be used to convert hydrogen into energy. Currently, platinum is used which is extremely expensive. Also, reactions at a higher temperature would be faster thus increasing efficiency.

"Ours is an entirely new approach that strikes a balance between having a regular molecular structure and mobile components all while showing genuine promise of application," says co-author Hurd, a PhD candidate studying chemistry at the U of C.

Kevin Colbow, director of research and development at Ballard Power Systems, a company that designs and manufactures clean energy hydrogen fuel cells, calls the work significant. "We believe that further improvement on conductivity and robustness of these materials could provide next generation membranes for PEM fuel cells."

University of Calgary

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.