Geologists point to outer space as source of the Earth's mineral riches

October 18, 2009

TORONTO, ON - According to a new study by geologists at the University of Toronto and the University of Maryland, the wealth of some minerals that lie in the rock beneath the Earth's surface may be extraterrestrial in origin.

"The extreme temperature at which the Earth's core formed more than four billion years ago would have completely stripped any precious metals from the rocky crust and deposited them in the core," says James Brenan of the Department of Geology at the University of Toronto and co-author of the study published in Nature Geoscience on October 18.

"So, the next question is why are there detectable, even mineable, concentrations of precious metals such as platinum and rhodium in the rock portion of the Earth today? Our results indicate that they could not have ended up there by any known internal process, and instead must have been added back, likely by a 'rain' of extraterrestrial debris, such as comets and meteorites."

Geologists have long speculated that four and a half billion years ago, the Earth was a cold mass of rock mixed with iron metal which was melted by the heat generated from the impact of massive planet-sized objects, allowing the iron to separate from the rock and form the Earth's core. Brenan and colleague William McDonough of the University of Maryland recreated the extreme pressure and temperature of this process, subjecting a similar mixture to temperatures above 2,000 degrees Celsius, and measured the composition of the resulting rock and iron.

Because the rock became void of the metal in the process, the scientists speculate that the same would have occurred when the Earth was formed, and that some sort of external source - such as a rain of extraterrestrial material - contributed to the presence of some precious metals in Earth's outer rocky portion today.

"The notion of extraterrestrial rain my also explain another mystery, which is how the rock portion of the Earth came to have hydrogen, carbon and phosphorous - the essential components for life, which were likely lost during Earth's violent beginning."
-end-
The research was funded with the support of the Natural Sciences and Engineering Research Council of Canada and a NASA Cosmochemistry grant.

MEDIA CONTACTS:

James M. Brenan
Department of Geology
University of Toronto
416-978-0281
brenan@geology.utoronto.ca

Sean Bettam
Office of Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

University of Toronto

Related Iron Articles from Brightsurf:

How stony-iron meteorites form
Meteorites give us insight into the early development of the solar system.

Bouillon fortified with a new iron compound could help reduce iron deficiency
Iron fortification of food is a cost-effective method of preventing iron deficiency.

Iron nanorobots go undercover
Customizable magnetic iron nanowires pinpoint and track the movements of target cells.

Iron deficiency in corals?
When iron is limited, the microalgae that live within coral cells change how they take in other trace metals, which could have cascading effects on vital biological functions and perhaps exacerbate the effects of climate change on corals.

Blocking the iron transport could stop tuberculosis
The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply.

Observed: An exoplanet where it rains iron
Nature magazine is publishing today a surprising study about the giant, ultra-hot planet WASP-76b in which researchers from the Instituto de Astrofísica de Canarias (IAC) have taken part.

An iron-clad asteroid
Mineralogists from Jena and Japan discover a previously unknown phenomenon in soil samples from the asteroid 'Itokawa': the surface of the celestial body is covered with tiny hair-shaped iron crystals.

It's Iron, Man: ITMO scientists found a way to treat cancer with iron oxide nanoparticles
Particles previously loaded with the antitumor drug are injected in vivo and further accumulate at the tumor areas.

The brain may need iron for healthy cognitive development
Iron levels in brain tissue rise during development and are correlated with cognitive abilities, according to research in children and young adults recently published in JNeurosci.

The regulators active during iron deficiency
Iron deficiency is a critical situation for plants, which respond using specific genetic programmes.

Read More: Iron News and Iron Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.