Breakthrough: With a chaperone, copper breaks through

October 18, 2010

Information on proteins is critical for understanding how cells function in health and disease. But while regular proteins are easy to extract and study, it is far more difficult to gather information about membrane proteins, which are responsible for exchanging elements essential to our health, like copper, between a cell and its surrounding tissues.

Now Prof. Nir Ben-Tal and his graduate students Maya Schushan and Yariv Barkan of Tel Aviv University's Department of Biochemistry and Molecular Biology have investigated how a type of membrane protein transfers essential copper ions throughout the body. This mechanism, Schushan says, could also be responsible for how the body absorbs Cisplatin, a common chemotherapy drug used to fight cancer. In the future, this new knowledge may allow scientists to improve the way the drug is transferred throughout the body, she continues.

Their breakthrough discovery was detailed in a recent issue of PNAS (Proceedings of the National Academy of Sciences).

Cellular gatekeepers and chaperones

Most proteins are water soluble, which allows for easy treatment and study. But membrane proteins reside in the greasy membrane that surrounds a cell. If researchers attempt to study them with normal technology of solubilization in water, they are destroyed ― and can't be studied.

Copper, which is absorbed into the body through a membrane protein, is necessary to the healthy functioning of the human body. A deficiency can give rise to disease, while loss of regulation is toxic. Therefore, the cell handles copper ions with special care. One chaperone molecule delivers the copper ion to an "entrance gate" outside the cell; another chaperone then picks it up and carries it to various destinations inside the cell.

The researchers suggest that this delicate system is maintained by passing one copper ion at a time by the copper transporter, allowing for maximum control of the copper ions. "This way, there is no risk of bringing several copper ions into the protein at the same time, which ultimately prevents harmful chemical reactions between the ions and the abundant chemical reagents within the cell," explains Prof. Ben-Tal. Once the ion has passed through the transporter into the cell, the transporter is ready to receive another copper ion if necessary.

Improving cancer drugs ― and more

The mechanism which transfers copper throughout the body may also be responsible for the transfer of the common chemotherapy drug Cisplatin. By studying how copper is transferred throughout the body, researchers may also gain a better understanding of how this medication and others are transferred into the cell.

With this information, says Prof. Ben-Tal, scientists could improve the transfer of the drug throughout the body, or develop a more effective chemotherapy drug. And that's not the only pharmaceutical dependent on the functioning of membrane proteins. "Sixty percent of drugs target membrane proteins," he explains, "so it's critical to learn how they function."
-end-
This work was done in collaboration with Prof. Turkan Haliloglu from Bogazici University, Istanbul.

American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.

American Friends of Tel Aviv University

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.