Consortium assembled to design human trials of mosaic HIV vaccine

October 18, 2010

DURHAM, N.C. - Duke University Medical Center vaccine experts have assembled an international team of investigators to design and implement the first human trial of a mosaic HIV vaccine candidate, a novel strategy that attempts to counter one of the most daunting challenges in HIV vaccine design: the virus's extensive genetic diversity.

Traditional HIV vaccines are designed to stimulate the body's immune system to recognize naturally occurring stretches of specific amino acids in the virus's proteins. In contrast, mosaic vaccines are composed of many sets of synthetic, computer-generated sequences of proteins that can prompt the immune system to respond to a wide variety of circulating HIV strains.

Such vaccines have already been studied in animals and have shown some success in enhancing the breadth of immune responses. Now, Barton Haynes, MD, director of the Duke Human Vaccine Institute and the Center for HIV/AIDS Vaccine Immunology (CHAVI), says a newly formed research coalition has begun designing an early phase safety trial to assess mosaic vaccines in humans. The trial will test the mosaic concept and could possibly lead to the next generation of HIV vaccine candidates.

Haynes, who will lead the consortium, says the group will use the NYVAC vaccinia vector (derived from the vaccine to protect against smallpox) and DNA that contain a new set of artificial computer-designed HIV genes in a phase I clinical trial that will be supported by the Bill & Melinda Gates Foundation and the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Haynes says the consortium hopes to launch human trials by late 2012.

The consortium includes many of the world's leading researchers and organizations committed to finding an effective vaccine to protect against HIV infection, including

The Foundation for the National Institutes of Health, the Fred Hutchinson Cancer Research Center and its NIH-funded HIV Vaccine Trials Network, the IPPOX Foundation in Switzerland, Beth Israel Deaconess Medical Center, Los Alamos National Laboratory, the NIH/NIAID Vaccine Research Center, Duke University and its Center of HIV/AIDS Vaccine Immunology, the Bill & Melinda Gates Foundation and the Division of AIDS of the National Institute of Allergy and Infectious Diseases.

Bette Korber, a senior scientist at Los Alamos National Laboratory and leader of the team that developed the mosaic genes, noted "HIV's diversity is vast, and the mosaic gene design represents a novel vaccine design to directly tackle HIV diversity in human clinical trials. Based on computational models, mosaic vaccines were predicted to perform better than natural HIV genes; experimental studies in animals that directly compared mosaic to natural vaccines supported that prediction. We are excited to test this concept in humans."

"Each member of this consortium is also a member of the Global HIV Vaccine Enterprise, and this collaboration is truly a global effort to make progress on HIV vaccine development," said Haynes.

The NYVAC vaccine is being provided by Sanofi-Pasteur, which is a collaborator in the study. The clinical development of NYVAC HIV vaccines has to date been conducted in Europe primarily through the EuroVacc Program.
-end-


Duke University Medical Center

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.