University of Cincinnati neurotrauma team awarded $2.1M to test 'lab on a tube'

October 18, 2010

CINCINNATI--The U.S. Department of Defense has awarded researchers at the University of Cincinnati (UC) a $2.1 million Advanced Technology/Therapeutic Development Award to develop the next generation of brain monitors.

The researchers' novel, multitasking "lab on a tube" is designed to provide continuous brain monitoring of patients who have suffered brain injury or other neurological emergencies and is capable of simultaneously draining cerebrospinal fluid.

The ultra-thin, spirally rolled tube--also known as a "smart catheter" or "smart sensor"--would allow real-time monitoring of seven different parameters with a single catheter placed inside the brain through a hole in the skull. The seven parameters are intracranial pressure, temperature, brain oxygenation, cerebral blood flow, EEG, cerebral lactate and glucose. In current practice, only two or three of these parameters are measured in most patients.

"It's extremely exciting," says Jed Hartings, PhD, research assistant professor in the department of neurosurgery at the UC College of Medicine and director of clinical monitoring for the Mayfield Clinic. "Most advances in the treatment of brain injury during the last 30 years have come from clinical observational science. Our ability to make such advances is based on our ability to monitor different aspects of the changing physiology of the brain as it recovers from injury.

"There are currently several methods for monitoring different aspects of brain physiology, but they involve separate devices, made largely by different companies," continues Hartings, the co-principal investigator. "The devices require placement of separate probes in the brain, which increases the risk of complications, is more expensive, and is logistically difficult. In addition, many of those modalities require expert training to operate the monitors and interpret the results."

The new lab-on-a-tube, Hartings says, would make all of the information accessible on a single probe.

The end goal is for the device to further reduce invasiveness by doubling as a ventricular drainage tube. Such tubes are widely used to drain excess cerebrospinal fluid from the brain to relieve intracranial pressure.

The smart catheter's dual use as monitor and drainage tube, Hartings believes, could result in the tube's being widely adopted by neuroscience intensive care units throughout the United States.

"It will greatly accelerate research and clinical insight into the disease process," Hartings says. "There will be huge databases generated by these parameters--some of which we already know what to do with, and some of which we need to gain more experience with."

Clinical availability of the smart sensor is likely at least a decade away, Hartings says.

The five-year Advanced Technology/Therapeutic Development Award is part of the Department of Defense's Psychological Health and Traumatic Brain Injury Research Program. The program reflects the military's heightened commitment to neurological research in response to the survival of large numbers of soldiers who suffered head injuries in the wars in Afghanistan and Iraq.

Researchers in UC's department of neurosurgery will collaborate with colleagues at the North Shore University Hospital-Long Island Jewish Medical Center, who received a $2.6 million grant. Hartings' co-principal investigator is Raj Narayan, MD, chairman of the department of neurosurgery at North Shore-LIJ and director of the Harvey Cushing Institutes of Neuroscience.

Narayan led development of the smart sensor while serving as department chair at UC through 2009.

Additional co-investigators are Lori Shutter, MD, director of neurocritical care at the UC Neuroscience Institute; Chong Ahn, PhD, professor in the department of electrical and computer engineering at UC; and Chunyan Li, PhD, of North Shore-LIJ.

The grant's first phase will involve further development and testing of the engineering design and sensor technology. The second phase will involve testing the sensor in animals against gold-standard, FDA-approved technologies. During the final phase, researchers will assess the device's safety in a clinical trial involving about 40 patients.

Physicians currently achieve the accepted standard of care by monitoring three parameters in the NSICU at UC Health University Hospital: intracranial pressure, brain oxygen and temperature.

Intracranial EEG is monitored in some patients who are enrolled in a clinical research study.

Development of the smart catheter began when members of the department of neurosurgery and Neurotrauma Center at the UC Neuroscience Institute expressed the need for a multimodality monitoring device for neurotrauma patients. UC engineers, working to fulfill this need, developed the preliminary working model of the multimodal tube in 2009. The prototype for a smart neuro-catheter was engineered by Li, then a postdoctoral fellow in the UC department of neurosurgery who was training under Ahn. Concepts for a lab-on-a-tube device with multimodality sensors were developed in the microsystems and bioMEMS laboratory headed by Ahn.

A patent is pending for the tube.
-end-
Also contributing to the tube's development were Pei-Ming Wu and WooSeok Jung of the microsystems and bioMEMS laboratory in UC's department of electrical and computer engineering.

The work was initially supported by the Integra Lifesciences Foundation, based in Plainsboro, N.J.

University of Cincinnati Academic Health Center

Related Brain Injury Articles from Brightsurf:

Using machine learning to predict pediatric brain injury
When newborn babies or children with heart or lung distress are struggling to survive, doctors often turn to a form of life support that uses artificial lungs.

A memory game could help us understand brain injury
A Boston University team created a memory game for mice in order to examine the function of two different brain areas that process information about the sensation of touch and the memory of previous events.

Clear signs of brain injury with severe COVID-19
Certain patients who receive hospital care for coronavirus infection (COVID-19) exhibit clinical and neurochemical signs of brain injury, a University of Gothenburg study shows.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Can brain injury from boxing, MMA be measured?
For boxers and mixed martial arts (MMA) fighters, is there a safe level of exposure to head trauma?

Study: Brain injury common in domestic violence
Domestic violence survivors commonly suffer repeated blows to the head and strangulation, trauma that has lasting effects that should be widely recognized by advocates, health care providers, law enforcement and others who are in a position to help, according to the authors of a new study.

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.

Every cell has a story to tell in brain injury
Traumatic head injury can have widespread effects in the brain, but now scientists can look in real time at how head injury affects thousands of individual cells and genes simultaneously in mice.

Traumatic brain injury recovery via petri dish
Researchers in the University of Georgia's Regenerative Bioscience Center have succeeded in reproducing the effects of traumatic brain injury and stimulating recovery in neuron cells grown in a petri dish.

Read More: Brain Injury News and Brain Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.