Space-based droplet dynamics lessons?

October 18, 2016

WASHINGTON, D.C., October 18, 2016 -- Droplets in space can grow freakishly large and bounce off nonwetting surfaces in truly unearthly ways. Astronauts frequently encounter huge droplets, and Scott Kelly recently demonstrated their unusual behavior aboard the International Space Station (ISS) via water balls and a hydrophobic (water repellant) ping pong paddle. (See https://www.youtube.com/watch?v=TLbhrMCM4_0.)

To explore the dynamics of these gigantic droplets, a group of researchers led by Mark Weislogel, a professor within the Department of Mechanical & Materials Engineering at Portland State University in Oregon, is generating and studying them right here on Earth.

How, you ask? As Weislogel and colleagues report this week in Physics of Fluids, from AIP Publishing, they simply form a puddle on a flat nonwetting surface and drop it six stories in a "tower drop." Items in free fall experience a nearly weightless state -- aka low-gravity.

"When gravity is essentially 'turned off' in this manner, the puddle tries to form a droplet and kicks itself off the surface in the process ... known as puddle jumping," Weislogel explained.

Large droplets and puddles tend to jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The group's simple experimental device -- without moving parts -- can be used to delve into dynamic droplet phenomena for droplets on the order of 10^4 times larger than their normal terrestrial counterparts.

It provides and confirms "quick and qualitative design guides for 'drop shooters' as used in drop tower tests, including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, drop volume, and fluid properties," he added.

What lessons can be learned from drop tests?

"Droplets and bubbles are very common and problematic within low-gravity spacecraft, so we need to better understand these to design more reliable systems for water processing, fuel systems, coolants, and habitats," Weislogel said. "The surprise is that these behaviors can be well predicted, some with 4 orders of magnitude extrapolations of results from terrestrial experiments."

In terms of applications, the group's work should help to improve spacecraft fluid systems -- noncontact evaporators, nonwetting utensils, condensing heat exchangers and more.

"Our method provides a unique way of studying other drop impact phenomena for which a simple and cheap droplet shooter is necessary," he noted. "It doesn't get simpler than using a puddle on a plate as a method to make droplets fly."

Weislogel's group is now using their results to "specify further tests aboard the ISS, where astronauts will perform droplet impact, rupture, splash, and coalescence studies using simple superhydrophobic paddles and very large liquid droplets," he said. "And we'll continue our drop tower tests, which is fun work for grad students in fluid mechanics, to explore other effects of fluid properties, wetting conditions, and surface geometry."
-end-
The article, "Puddle jumping: Spontaneous ejection of large liquid droplets from hydrophobic surfaces during drop tower tests," is authored by B. Attari, M. Weislogel, A. Wollman, Y. Chen and T. Synder. The article will appear in the journal Physics of Fluids on October 18, 2016 (DOI: 10.1063/1.4963686). After that date, it can be accessed at http://scitation.aip.org/content/aip/journal/pof2/28/10/10.1063/1.4963686.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See http://pof.aip.org.

American Institute of Physics

Related International Space Station Articles from Brightsurf:

Amyloid formation in the International Space Station
The collaborative research team of Japan using the International Space Station (ISS) successfully characterized Alzheimer's disease-related amyloid fibril formation under microgravity conditions.

Bacteria on the International Space Station no more dangerous than earthbound strains
Two particularly tenacious species of bacteria have colonized the potable water dispenser aboard the International Space Station (ISS), but a new study suggests that they are no more dangerous than closely related strains on Earth.

NASA researchers catalogue all microbes and fungi on the International Space Station
A comprehensive catalogue of the bacteria and fungi found on surfaces inside the International Space Station (ISS) is being presented in a study published in the open-access journal Microbiome.

Superbugs have colonized the International Space Station -- but there's a silver lining
Researchers have taken another small step towards deep space exploration, by testing a new silver- and ruthenium-based antimicrobial coating aboard the International Space Station (ISS).

Technology developed in Brazil will be part of the International Space Station
Presented during FAPESP Week London, instrument created in São Paulo will be improved in collaboration with Russia and will measure solar flares; launch is scheduled for 2022.

'Dust up' on International Space Station hints at sources of structure
In a lab on Earth, electrically charged dust generally lines up either along the downward pull of gravity or across it.

May the forest be with you: GEDI moves toward launch to space station
GEDI (pronounced like 'Jedi,' of Star Wars fame) is a first-of-its-kind laser instrument designed to map the world's forests in 3-D from space.

The bacterial community on the International Space Station resembles homes
Microbiologists at the University of California, Davis analyzed swabs taken by astronauts on the International Space Station (ISS) and compared them with samples from homes on earth as well as the Human Microbiome Project.

NASA watching Harvey from satellites and the International Space Station
NASA has a lot of resources providing information on Tropical Storm Harvey as it continues to drop tremendous, flooding rainfall on Texas and Louisiana.

Experiment aboard space station studies 'space weather'
To study conditions in the ionosphere, Cornell University research engineer Steven Powell and others in the College of Engineering have developed the FOTON (Fast Orbital TEC for Orbit and Navigation) GPS receiver.

Read More: International Space Station News and International Space Station Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.