Nav: Home

When it comes to polymer fragility, size does matter

October 18, 2016

WASHINGTON, D.C., October 18, 2016 -- Polymers are very large molecules consisting of thousands, even millions, of atoms bonded together in a repeating pattern similar to a chain. They make up many of the things around us we consider part of our everyday lives, from bottles and tires to airplanes and medical devices. Understanding what gives polymers their unique properties is helpful in developing new functional materials for various current and future technologies. A multinational team of researchers have brought together expertise and experimental results over years to help to explain the extremely strong temperature dependence of viscoelastic properties of polymers melts, a mystery that had thus far evaded explanation.

Fragility index is a parameter that quantifies how fast the material transforms from a solid to a liquid with temperature increase. For many years the higher fragility of polymers as compared to small molecules has been well documented. Many polymers exhibit fragility index approximately 1.5 times higher than even the most fragile, small molecular liquids and until now, there has been no clear answer as to why this is the case.

By combining a number of tools and techniques, a team of researchers from the U.S., Italy and China was able to find a more complete picture of the glass transition phenomenon in polymers and to point out where the polymers differ from small molecular liquids. The researchers explain their findings this week in The Journal of Chemical Physics, from AIP Publishing.

"We worked on this problem with our colleagues for a long time and though our paper with the similar title, 'Why many polymers are so fragile?' was published in 2007, we could only formulate the problem, we had no answer," explained Alexei P. Sokolov, a research scientist at Oak Ridge National Laboratory and professor of Chemistry and Physics at the University of Tennessee. "Over the years we accumulated many experimental results obtained by many different techniques (this is why the paper has so many authors) on a model polymer polystyrene to come up with this idea." This provided the broad view of many polymer specific properties needed to figure out what was missing. Using polystyrene with various chain lengths, researchers correlated many of their properties to their fragility and demonstrated that these correlations work for short chains but progressively fail when the length, i.e. the number of repeated units or segments, increases. The work may finally resolves this puzzle.

The researchers realized that the segmental (also called structural) relaxation in the case of polymers presents the relaxation of only a small part of the molecule. For polymers the complete molecular scale relaxation happens only on a much longer time scale that corresponds to chain relaxation. They show that analysis of the chain relaxation instead of relaxation of segments restores all the correlations characteristic for non-polymeric systems. This discovery leads to a new way of looking on the problem.

What does this mean for the polymers that are part of our daily life?

"Our work has broader implications, because similar mechanisms may account for rather high fragility of other complex systems in soft condensed matter," Sokolov said. "Whether this will help to make better polymers remains to be seen, but it should help in the design of polymers with the desired viscoelastic properties."
The article, "Why many polymers are so fragile: a new perspective," is authored by C. Dalle-Ferrier, A. Kisliuk, L. Hong, G. Carini Jr, G. Carini, G. D'Angelo, C. Alba-Simionesco, V.N. Novikov and A.P. Sokolov. The article will appear in the journal The Journal of Chemical Physics on October 18, 2016 (DOI: 10.1063/1.4964362). After that date, it can be accessed at


The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See

American Institute of Physics

Related Polymers Articles:

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.
Mixing the unmixable -- a novel approach for efficiently fusing different polymers
Cross-linked polymers are structures where large molecular chains are linked together, allowing exceptional mechanical properties and chemical resistance to the final product.
Theoretical tubulanes inspire ultrahard polymers
Rice University engineers print 3D blocks based on theoretical tubulanes and find they're nearly as hard as diamond.
New synthesis method yields degradable polymers
MIT chemists have come up with a way to make certain drug-delivery polymers more readily degradable by adding a novel type of building block to the polymer backbone.
Bottom-up synthesis of crystalline 2D polymers
Scientists at TU Dresden and Ulm University have succeeded in synthesizing sheet-like 2D polymers by a bottom-up process for the first time.
Secret messages hidden in light-sensitive polymers
Scientists from the CNRS and Aix-Marseille Université have recently shown how valuable light-sensitive macromolecules are: when exposed to the right wavelength of light, they can be transformed so as to change, erase or decode the molecular message that they contain.
Successful application of machine learning in the discovery of new polymers
As a powerful example of how artificial intelligence (AI) can accelerate the discovery of new materials, scientists in Japan have designed and verified polymers with high thermal conductivity -- a property that would be the key to heat management, for example, in the fifth-generation (5G) mobile communication technologies.
How to capture waste heat energy with improved polymers
By one official estimate, American manufacturing, transportation, residential and commercial consumers use only about 40 percent of the energy they draw on, wasting 60 percent.
Researchers can now predict properties of disordered polymers
Thanks to a team of researchers from the University of Illinois at Urbana-Champaign and the University of Massachusetts Amherst, scientists are able to read patterns on long chains of molecules to understand and predict behavior of disordered strands of proteins and polymers.
Synthesis of helical ladder polymers
Researchers at Kanazawa University synthesized helical ladder polymers with a well-defined cyclic repeating unit and one-handed helical geometry, as they reported in the Journal of the American Chemical Society.
More Polymers News and Polymers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at