Cell softness predicts corneal transplant success

October 18, 2016

Stem cell transplantation is a promising strategy for restoring eyesight resulting from corneal damage, but tissue grafts must contain a high percentage of stem cells for clinical success. A study published October 18 in Biophysical Journal reveals that the softness of corneal cells indicates their potential for stem-like activity, including the ability to self-multiply and turn into different types of mature cells. This biomechanical marker could be used as a rapid and cost-effective approach to enrich for stem-like cells in corneal transplant tissue.

"Previous studies have shown that a threshold percentage of limbal stem cells (which are responsible for replenishing the cornea) is required for successful corneal autologous therapy," says co-first author Tom Bongiorno, a graduate student in bioengineering at Georgia Tech. "Future sorting techniques based on cell stiffness and existing biomarkers may enable the enrichment of limbal stem cells, thus facilitating clinical success for patients with naturally low limbal stem cell percentages."

Each year, more than one million Americans are afflicted with severely reduced visual acuity caused by corneal damage or disease. One major cause of visual loss and blindness is damage to limbal stem cells. Recently, limbal stem cell transplantation was approved in Europe for the treatment of corneal damage. Studies have shown that the clinical success of transplantation depends on the number and percentage of limbal stem cells in tissue grafts. However, current antibody-based methods used to enrich for stem cells in transplants are expensive and time-consuming.

To address this problem, Bongiorno and senior study author Todd Sulchek, an associate professor in Mechanical Engineering at Georgia Tech, set out to identify biomechanical properties that could be used as a faster, cheaper alternative to enrich for stem cells. They first classified different types of human corneal cells based on molecular markers, and then assessed their mechanical properties using atomic force microscopy. This highly sensitive biophysical technique uses a tiny probe--such as a bead or tip--that touches and exerts various forces on individual cells. The results showed that limbal stem cells were softer, or more easily compressible, than more mature cells.

Additional analyses revealed that stem cells were also smaller, had a higher nucleus-to-cytoplasm ratio, and were less viscous than mature cells. Moreover, combinations of multiple biophysical markers, such as stiffness and size, were about as good as the currently employed molecular marker at classifying stem-like activity. "A microfluidic device that sorts cells based on their mechanical properties could offer cost and labor advantages over current methods and may provide sufficient enrichment to serve as an alternative or additional approach to antibody-based techniques," Sulchek says.

In a microfluidic device, fluid samples containing cells are pumped through small channels, which contain tiny filters or structures that could sort the cells based on size or deformability. Unlike atomic force microscopy, microfluidics is a high-throughput screening technique, but additional work is required to assess the efficiency of this type of biophysical-based sorting for stem cell enrichment. In future studies, Sulchek and his team plan to test this approach and scale up the technology with clinical applications in mind. In principle, a similar approach could improve outcomes for other types of stem cell transplantation.

"Biophysical markers hold great promise for improving corneal transplant success for many patients with visual impairments," Sulchek says. "In combination with recent advances in sorting cells on a biophysical basis, the biomechanical stemness markers we identified hold the potential to rapidly generate corneal transplants with highly enriched stem cell populations, which could one day translate into better outcomes for these patients."
-end-
Funding was provided by the a NIH NIGMS Biotechnology Training Grant on Cell and Tissue Engineering, the Knights Templar Eye Foundation, the Center for Regenerative Engineering and Medicine, the Sharon Stewart Aniridia Research Trust, and the NSF CMMI division.

Biophysical Journal, Bongiorno and Chojnowski et al.: "Cellular Stiffness as a Novel Stemness Marker in the Corneal Limbus" http://www.cell.com/biophysj/fulltext/S0006-3495(16)30771-8

The Biophysical Journal (@BiophysJ), published by Cell Press for the Biophysical Society, is a bimonthly journal that publishes original articles, letters, and reviews on the most important developments in modern biophysics-a broad and rapidly advancing field encompassing the study of biological structures and focusing on mechanisms at the molecular, cellular, and systems levels through the concepts and methods of physics, chemistry, mathematics, engineering, and computational science. Visit: http://www.cell.com/biophysj/home. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.