Nav: Home

Cell softness predicts corneal transplant success

October 18, 2016

Stem cell transplantation is a promising strategy for restoring eyesight resulting from corneal damage, but tissue grafts must contain a high percentage of stem cells for clinical success. A study published October 18 in Biophysical Journal reveals that the softness of corneal cells indicates their potential for stem-like activity, including the ability to self-multiply and turn into different types of mature cells. This biomechanical marker could be used as a rapid and cost-effective approach to enrich for stem-like cells in corneal transplant tissue.

"Previous studies have shown that a threshold percentage of limbal stem cells (which are responsible for replenishing the cornea) is required for successful corneal autologous therapy," says co-first author Tom Bongiorno, a graduate student in bioengineering at Georgia Tech. "Future sorting techniques based on cell stiffness and existing biomarkers may enable the enrichment of limbal stem cells, thus facilitating clinical success for patients with naturally low limbal stem cell percentages."

Each year, more than one million Americans are afflicted with severely reduced visual acuity caused by corneal damage or disease. One major cause of visual loss and blindness is damage to limbal stem cells. Recently, limbal stem cell transplantation was approved in Europe for the treatment of corneal damage. Studies have shown that the clinical success of transplantation depends on the number and percentage of limbal stem cells in tissue grafts. However, current antibody-based methods used to enrich for stem cells in transplants are expensive and time-consuming.

To address this problem, Bongiorno and senior study author Todd Sulchek, an associate professor in Mechanical Engineering at Georgia Tech, set out to identify biomechanical properties that could be used as a faster, cheaper alternative to enrich for stem cells. They first classified different types of human corneal cells based on molecular markers, and then assessed their mechanical properties using atomic force microscopy. This highly sensitive biophysical technique uses a tiny probe--such as a bead or tip--that touches and exerts various forces on individual cells. The results showed that limbal stem cells were softer, or more easily compressible, than more mature cells.

Additional analyses revealed that stem cells were also smaller, had a higher nucleus-to-cytoplasm ratio, and were less viscous than mature cells. Moreover, combinations of multiple biophysical markers, such as stiffness and size, were about as good as the currently employed molecular marker at classifying stem-like activity. "A microfluidic device that sorts cells based on their mechanical properties could offer cost and labor advantages over current methods and may provide sufficient enrichment to serve as an alternative or additional approach to antibody-based techniques," Sulchek says.

In a microfluidic device, fluid samples containing cells are pumped through small channels, which contain tiny filters or structures that could sort the cells based on size or deformability. Unlike atomic force microscopy, microfluidics is a high-throughput screening technique, but additional work is required to assess the efficiency of this type of biophysical-based sorting for stem cell enrichment. In future studies, Sulchek and his team plan to test this approach and scale up the technology with clinical applications in mind. In principle, a similar approach could improve outcomes for other types of stem cell transplantation.

"Biophysical markers hold great promise for improving corneal transplant success for many patients with visual impairments," Sulchek says. "In combination with recent advances in sorting cells on a biophysical basis, the biomechanical stemness markers we identified hold the potential to rapidly generate corneal transplants with highly enriched stem cell populations, which could one day translate into better outcomes for these patients."
-end-
Funding was provided by the a NIH NIGMS Biotechnology Training Grant on Cell and Tissue Engineering, the Knights Templar Eye Foundation, the Center for Regenerative Engineering and Medicine, the Sharon Stewart Aniridia Research Trust, and the NSF CMMI division.

Biophysical Journal, Bongiorno and Chojnowski et al.: "Cellular Stiffness as a Novel Stemness Marker in the Corneal Limbus" http://www.cell.com/biophysj/fulltext/S0006-3495(16)30771-8

The Biophysical Journal (@BiophysJ), published by Cell Press for the Biophysical Society, is a bimonthly journal that publishes original articles, letters, and reviews on the most important developments in modern biophysics-a broad and rapidly advancing field encompassing the study of biological structures and focusing on mechanisms at the molecular, cellular, and systems levels through the concepts and methods of physics, chemistry, mathematics, engineering, and computational science. Visit: http://www.cell.com/biophysj/home. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...