From Genome Research: Strain-level profiling yields new insights into mother-infant microbiomes

October 18, 2016

October 18, 2016 - Direct microbial sequencing of environmental samples, such as from ocean water, hospital surfaces, and the human gut, have illuminated the vast number of microbes present in our world. However, a microbial species can be genetically diverse, and this variability is often not captured during metagenomic analysis. In a study published online today in Genome Research, scientists developed a new tool to examine genetic differences within bacterial species and uncover novel transmission patterns in mother-infant microbiomes and marine metagenomes not previously appreciated by species-level analyses.

Within a given bacterial species, gene content can vary by 50% or more from the reference genome. "This suggests massive variability at the strain level that could have real functional consequences," said senior author Katherine Pollard, PhD, from the Gladstone Institutes and the University of California, San Francisco (UCSF). "We saw a need for a computationally efficient tool to quantify this variation from shotgun metagenomics data."

The researchers developed the tool, MIDAS, for rapidly profiling differences in gene content and single nucleotide variants across bacterial strains. To build MIDAS, researchers first generated a database of 31,007 high-quality bacterial genomes. Using a set of 30 informative "universal" genes, they hierarchically clustered the genomes to define species. The researchers were able to assign 8.6% of the previously unannotated genomes to a species, and reassigned species for 9.8%.

Applying MIDAS to 98 mother and infant stool metagenomes, the researchers used strain-level genetic differences to track bacteria between mothers and infants. "Strain-level variants reveal patterns that contradict what one would assume from patterns at the species level," said first author Stephen Nayfach, a graduate student at UCSF. Previous studies suggested that mother and infant microbiomes become more similar over the first year of life. However, by examining "marker alleles," or rare genetic differences, the researchers found that early colonizing strains are transferred from the mother, but that late colonizing strains are different and likely are acquired from the environment. "The maturation of the infant gut microbiome over the first year gives the impression of ongoing transmissions from the mother," said Pollard. "But the genetic variants in the bacteria show that the acquired strains are often not the same as the mother's."

The researchers also applied MIDAS to marine samples collected at varying depths across the world's oceans. Most prevalent marine bacteria had differences in gene content that were strongly associated with geography. Additional work will be needed to distinguish whether genetic differences between locations are the result of adaptation or genetic drift within the species. "The next big challenge is to disentangle the forces that drive population structure in the microbiome and to associate this variability with traits of the host or environment," Pollard said.
Researchers from Gladstone and UCSF contributed to this work. The study was funded by the National Science Foundation, the Gordon & Betty Moore Foundation, the San Simeon Fund, and the Gladstone Institutes.

Media Contacts:

The authors are available for more information by contacting: Dana Smith, Communications and Media Relations Specialist, Gladstone Institutes (; +1-415-734-2532).

Interested reporters may obtain copies of the manuscript via email from Peggy Calicchia, Administrative Assistant, Genome Research (, +1-516-422-4012).

About the article:

The manuscript will be published online ahead of print on 18 October 2016. Its full citation is as follows:

Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res doi: 10.1101/gr.201863.115

About Genome Research:

Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.

About Cold Spring Harbor Laboratory Press:

Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. Since 1933, it has furthered the advance and spread of scientific knowledge in all areas of genetics and molecular biology, including cancer biology, plant science, bioinformatics, and neurobiology. The Press is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit our website at

Genome Research issues press releases to highlight significant research studies that are published in the journal.

Cold Spring Harbor Laboratory

Related Genomes Articles from Brightsurf:

New wheat and barley genomes will help feed the world
An international research collaboration, including scientists from the University of Adelaide's Waite Research Institute, has unlocked new genetic variation in wheat and barley - a major boost for the global effort in breeding higher-yielding wheat and barley varieties.

Uncovering novel genomes from earth's microbiomes
As reported in Nature Biotechnology, the known diversity of bacteria and archaea has been expanded by 44% through a publicly available collection of more than 52,000 microbial genomes from environmental samples, resulting from a JGI-led collaboration involving more than 200 scientists (the IMG Data Consortium) around the world.

Researchers map genomes of agricultural monsters
The University of Cincinnati is unlocking the genomes of creepy agricultural pests like screwworms that feast on livestock from the inside out and thrips that transmit viruses to plants.

A new assembler for decoding genomes of microbial communities developed
The metaFlye assembler is designed to assemble DNA samples from microbial communities.

Unlocking the secrets of plant genomes in high resolution
Resolving genomes, particularly plant genomes, is a very complex and error-prone task.

Genomes published for major agricultural weeds
Representing some of the most troublesome agricultural weeds, waterhemp, smooth pigweed, and Palmer amaranth impact crop production systems across the US and elsewhere with ripple effects felt by economies worldwide.

ENCODE3: Interpreting the human and mouse genomes
An international consortium of approximately 500 scientists, led in part by researchers at Cold Spring Harbor Laboratory, reports on the completion of Phase 3 of the ENCODE project, providing a resource for scientists to understand how genetic variation shapes human health and disease.

MetaviralSPAdes -- New assembler for virus genomes
There was no specialized viral metagenome assembler until recently. But the joint team of Russian and US researchers from Saint-Petersburg State University and University of California at San Diego just released the metaviralSPAdes assembler (published in journal Bioinformatics on May 16) that turns the analysis of the metavirome sequencing results into an easy task.

Eleven human genomes in nine days
UC Santa Cruz researchers are helping drive advances in human genome assembly to make the process better, faster, and cheaper.

Hornwort genomes could lead to crop improvement
Fay-Wei Li from the Boyce Thompson Institute and researchers from across the globe sequenced the genomes of three hornworts, illuminating the dawn of land plants.

Read More: Genomes News and Genomes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to