Nav: Home

New tools identify key evolutionary advantages from ancient hominid interbreeding

October 18, 2016

Neanderthals. Denisovans. Homo sapiens. Around 50,000 years ago, these hominids not only interbred, but in some cases, modern humans may have also received a special evolutionary advantage from doing so. As more and more data from archaic genomes are becoming available, scientists have become keenly interested in pinpointing these regions to better understand the potential benefits that may have been bestowed to us.

One of the most striking recent examples is the EPAS1 gene, which confers a selective advantage in Tibetans by making them less prone to hypoxia at high altitudes. We now know that the Denisovans introduced it into the human gene pool.

Inspired by this example, in a new study published in the advanced online edition of Molecular Biology and Evolution, computational biologists Fernando Racimo, Davide Marnetto and Emilia Huerta-Sánchez have developed statistical tools and simulations to successfully identify the signatures of these interbred genomic regions. "Many studies had focused on the patterns of archaic introgression at the genome-wide level, and we realized that we knew very little about what to expect for a local region of the genome," said Huerta-Sánchez, who led the study. "We wanted to know whether the patterns of genetic variation observed at the EPAS1 gene could be used to identify other introgressed regions that were also beneficial for modern humans"

"We looked for long genomic regions of certain present-day human populations that looked extremely similar to the Neanderthal or Denisovan genomes, and also very different from the genomes of other present-day populations," said Racimo, the first author of the study.

Furthermore, they adapted their tools to examine the 1000 Genomes dataset and identified and expanded on the number of promising candidate genes within these regions. These mostly include genes involved in fat metabolism, pigmentation and the immune system. The authors speculate that these unique changes may have allowed archaic humans to survive in Eurasia during the Pleistocene, and may have been passed on to present-day human populations during their expansion out of Africa.

Finally, their approach is versatile enough to begin to trace back other signatures from species to provide new insights into their biology and evolutionary history and better understand how populations of organisms respond to these interbreeding events.

"We are aiming to democratize the study of adaptive introgression, so that it becomes easy to do this at a fine scale in non-human organisms as well," said Racimo.
-end-


Molecular Biology and Evolution (Oxford University Press)

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".