Nav: Home

RI-MUHC researchers discover new path to stop the spread of cancer

October 18, 2016

Montreal, Oct. 18, 2016 - Investigators from the Research Institute of the McGill University Health Centre (RI-MUHC), and the Institute of Cancer Research, London (UK), have discovered that some cancer cells can draw blood from existing mature blood vessels allowing them to continue to spread. These findings, published in the journal Nature Medicine, will immediately improve the lives and prognosis of patients with colon cancer, which has metastasized to the liver. The team of researchers is continuing its efforts to better understand the mechanisms behind this discovery in order to develop new targeted therapies aimed at stopping the cancer from spreading.

Cancers are often managed by surgical removal of the tumour. However, as many as half the patients who undergo this procedure to treat colon cancer will develop liver metastasis. Metastasis occurs when cancer cells break away from the primary tumour site and enter the bloodstream, spreading to other parts of the body. It is usually this recurrence of cancer that is fatal for patients.

"Metastatic cancer is harder to treat than primary cancer -- about 80 per cent of patients diagnosed with colon cancer that metastasizes to the liver are inoperable," explains Dr. Peter Metrakos, lead author of the study and director of the Multi-Organ Transplant Program and of Hepatopancreatobiliary Surgery. "Chemotherapy has been able to prolong the lives of these patients, but it has not been able to provide a cure. If we can stop the metastasis, we have a better chance of curing patients."

In an attempt to stop metastatic growth, scientists have focused on angiogenesis -- a well-known mechanism by which cancer cells generate new blood vessels in order to grow. In the last decade, researchers have developed drugs to target this process. It seemed obvious that if you block the ability of the tumour to obtain blood -- its oxygen and nutrients - you would be able to slow the tumour growth, if not kill it completely. Surprisingly, these drugs, called anti-angiogenic treatments, have succeeded in slowing the growth of some cancers, but they have not successfully increased patient survival.

"We were treating all patients as if they were generating new blood vessels, but our research has revealed that roughly 40-45 per cent of tumours derive their blood supplies from new blood vessels, and another 40-45 per cent derive their blood supplies by co-opting existing blood vessels of the liver to draw their blood, which explains why existing therapies that target new blood vessels are not working as well as predicted," says Dr. Metrakos. "We thought tumours always generated the growth of new blood vessels but in some cases what they are doing is a little sneakier: the cancer cells surround the existing blood vessels of the liver to draw their blood supply. We need to select our patients based on how their cancers obtain their blood supply and stratify them for the right treatment, essentially personalizing medicine."

Dr. Metrakos's team has also done some preliminary work on other solid tumours. More research is needed, but the initial data show that the same observations of access to blood supply could be true in other tumours such as brain and lung cancer, renal cell carcinoma and many others.
About the study

The study, "Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases" was co-authored by Sophia Frentzas, Eve Simoneau, Victoria L. Bridgeman, Peter B. Vermeulen, Shane Foo, Eleftherios Kostaras, Mark Nathan, Andrew Wotherspoon, Zu-hua Gao, Yu Shi, Gert Van den Eynden, Frances Daley, Clare Peckitt, Xianming Tan, Ayat Salman, Anthoula Lazaris, Patrycja Gazinska, Tracy J. Berg, Zak Eltahir, Laila Ritsma, Jacco Van, Rheenen, Alla Khashper, Gina Brown, Hanna Nystrom, Malin Sund, Steven Van Laere, Evelyne Loyer, Luc Dirix, David Cunningham, Peter Metrakos, Andrew R. Reynolds.

About the RI-MUHC

The Research Institute of the McGill University Health Centre (RI-MUHC) is a world-renowned biomedical and healthcare research centre. The Institute, which is affiliated with the Faculty of Medicine of McGill University, is the research arm of the McGill University Health Centre (MUHC) - an academic health centre located in Montreal, Canada, that has a mandate to focus on complex care within its community. The RI-MUHC supports over 460 researchers and close to 1,300 research trainees devoted to a broad spectrum of fundamental, clinical and health outcomes research at the Glen and the Montreal General Hospital sites of the MUHC. Its research facilities offer a dynamic multidisciplinary environment that fosters collaboration and leverages discovery aimed at improving the health of individual patients across their lifespan. The RI-MUHC is supported in part by the Fonds de recherche du Québec - Santé (FRQS).

About the Cancer Research Program of the RI-MUHC

The Cancer Research Program (CRP) of the RI-MUHC is comprised of 30 researchers, 10 which are active cancer care clinicians with a collective expertise in basic and translational science. Our Program principal investigators currently supervise 151 trainees enrolled in several departments at McGill University.

Housed at the new state-of-the-art facilities at the Glen Campus in Montreal, the CRP's greatest strengths are their large bio banks of patient tumor and blood samples. The knowledge and data gathered from these tissues are used by national and international collaborators.

McGill University Health Centre

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...