Nav: Home

Breaking up: a convoluted drama at nuclear scale, too

October 18, 2016

Regardless of the scenario, breaking up is dramatic. Take for example the case of carbon (12C) splitting into three nuclei of helium. Until now, due to the poor quality of data and limited detection capabilities, physicists did not know whether the helium fragments were the object of a direct breakup in multiple fragments up front or were formed in a sequence of successive fragmentations. The question has been puzzling physicists for some time. Now, scientists from Denmark's Aarhus University have used a state-of-the-art detector capable of measuring, for the first time, the precise disintegration of the 12C into three helium nuclei. Their findings, released in a study published in EPJ A, reveal a sequence of fragmentations, relevant to developing a specific kind of fusion reactions and in astrophysics.

Excited states of 12C that split into three helium nuclei were first intensively investigated by the Nobel Laureate Ernest Rutherford and his colleague Mark Oliphant in 1933. When atoms break up into smaller parts, the manner in which energy is distributed between the fragments contains in itself information on how the atom fell apart. Seeking a better understanding of the nuclear structure as well as the arrangement of protons and neutrons, the authors focus on detecting data following the splitting of the carbon (12C) into three helium nuclei, which is interpreted as a reaction between protons and an isotope of Boron (11B). By comparing their detection data with the existing breakup models, the authors confirmed the hypothesis of a sequential scenario and refuting that of a direct breakup.

Their findings could have applications in devising an alternative to neutron-producing fusion reactions, a process called aneutronic fusion. In addition, they could help to improve our theoretical understanding of an extremely important reaction in astrophysics: the time-reversed process involving the fusion of three helium nuclei into 12C.
-end-
Reference: H.K. Laursen, H. O. U. Fynbo, O.S. Kirsebom, K.S. Madsbøl, and K. Riisager (2016), Complete kinematical study of the 3 α breakup of the 16.11 MeV State in 12C , European Physical Journal A 52: 271, DOI 10.1140/epja/i2016-16271-2

Springer

Related Carbon Articles:

The carbon dioxide loop
Marine biologists quantify the carbon consumption of bacterioplankton to better understand the ocean carbon cycle.
Transforming the carbon economy
A task force commissioned in 2016 by former US Secretary of Energy Ernest Moniz has proposed a framework for evaluating R&D on recycling carbon dioxide and removing large amounts of CO2 from the atmosphere.
Closing the carbon loop
Research at the University of Pittsburgh's Swanson School of Engineering focused on developing a new catalyst that would lead to large-scale implementation of capture and conversion of carbon dioxide (CO2) was recently published in the Royal Society of Chemistry journal Catalysis Science & Technology.
An overlooked source of carbon emissions
Nations that pledged to carry out the Paris climate agreement have moved forward to find practical ways to reduce greenhouse gas emissions, including efforts to ban hydrofluorocarbons and set stricter fuel-efficiency standards.
Enabling direct carbon capture
Researchers have developed a solid material that can capture carbon dioxide from the atmosphere, even at very low concentrations.
Development of a novel carbon nanomaterial 'pot'
A novel, pot-shaped, carbon nanomaterial developed by researchers from Kumamoto University, Japan is several times deeper than any hollow carbon nanostructure previously produced.
Unraveling truly one-dimensional carbon solids
Elemental carbon appears in many different forms, including diamond and graphite.
Carbon leads the way in clean energy
Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.
Consumers care about carbon footprint
How much do consumers care about the carbon footprint of the products they buy?
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.

Related Carbon Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".