Nav: Home

Pushing the boundaries of magnet design

October 18, 2016

For physicists, loss of magnetisation in permanent magnets can be a real concern. In response, the Japanese company Sumitomo created the strongest available magnet--one offering ten times more magnetic energy than previous versions - in 1983. These magnets are a combination of materials including rare-earth metal and so-called transition metals, and are accordingly referred to as RE-TM-B magnets. A Russian team has now been pushing the boundaries of magnet design, as published in a recent study in EPJ Plus. They have developed methods to counter the spontaneous loss of magnetisation, based on their understanding of the underlying physical phenomenon. Roman Morgunov from the Institute of Problems of Chemical Physics at the Russian Academy of Sciences and colleagues have now developed a simple additive-based method for ensuring the stability of permanent magnets over time, with no loss to their main magnetic characteristics.

To design magnets that retain their magnetic stability, the authors altered the chemical composition of a RE-TM-B magnet. Their method consists in inserting small amounts of Samarium atoms at random places within the crystalline sub-lattice of the magnet's rare-earth component. They observed a multi-fold increase in the magnet's stability over time with as little as 1% Samarium. The advantage of using such low quantity of additives to stabilise the magnet is that it does not alter the magnetic properties.

The authors believe this result is linked to Samarium's symmetry. It differs from the crystalline structure of Dysprosium atoms, which enter the composition of the magnet's rare-earth component. As a result, spontaneous magnetisation no longer takes place. This is because the potential barriers separating the magnetisation states of different energies are enhanced by the disrupted symmetry.

Further developments of this research will most likely focus on identifying the discrete magnetisation jumps--elementary events that initiate the reversible magnetisation, leading to a loss in stability.
-end-
Reference: R. B. Morgunov, E. I. Kunitsyna, V. V. Kucheryaev, V. P. Piskorskii, O. G. Ospennikova, E. N. Kablov (2016), Giant effect of Sm atoms on time stability of (NdDy)(FeCo)B magnet, European Physical Journal Plus 131:344 (2016), DOI 10.1140/epjp/i2016-16344-7

Springer

Related Magnets Articles:

Magnets, all the way down!
If you can't move electrons around to study how factors like symmetry impact the larger-scale magnetic effects, what can you do instead?
Can the donut-shaped magnet 'CAPPuccino submarine' hunt for dark matter?
IBS scientists clarify that toroidal magnets can also look for axions, one of the particle candidates for the mysterious dark matter.
Tiny super magnets could be the future of drug delivery
Microscopic crystals could soon be zipping drugs around your body, taking them to diseased organs.
3-D-printed permanent magnets outperform conventional versions, conserve rare materials
Researchers at the Department of Energy's Oak Ridge National Laboratory have demonstrated that permanent magnets produced by additive manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials.
3-D-printed magnets
Scientists at TU Wien have found a way to create magnets in a 3-D printer.
Pushing the boundaries of magnet design
A Russian team has been pushing the boundaries of magnet design, as published in a recent study in EPJ Plus.
CMI announces domestic rare-earth magnet partnership with INFINIUM
The US Department of Energy's Critical Materials Institute announced today a new partnership with INFINIUM, a metals production technology company, to demonstrate the production of rare-earth magnets sourced and manufactured entirely in the US.
ORNL licenses rare earth magnet recycling process to Momentum Technologies
The Department of Energy's Oak Ridge National Laboratory and Momentum Technologies have signed a non-exclusive licensing agreement for an ORNL process designed to recover rare earth magnets from used computer hard drives.
ORNL licenses rare earth magnet recycling process to Momentum Technologies
The Department of Energy's Oak Ridge National Laboratory and Momentum Technologies have signed a non-exclusive licensing agreement for an ORNL process designed to recover rare earth magnets from used computer hard drives.
CMI, Oddello Industries pursue recovery of rare-earth magnets from used hard drives
A process developed for large-scale recovery of rare earth magnets from used computer hard drives will undergo industrial testing under a new agreement between Oddello Industries LLC and ORNL, as part of the Department of Energy's Critical Materials Institute.

Related Magnets Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".